Сетевой фильтр

Содержание

Сетевые фильтры — как они работают, примеры схем

Что такое сетевой фильтр? — это относительно недорогое устройство, предохраняющее достаточно ценные электроаппараты отперегрузок по току, высокочастотных и импульсных помех, аномального напряжения (повышенного или пониженного относительно нормы).

Основная задача фильтра — пропустить через себя переменный ток частотой 50 Гц и напряжением 220 В, а всяким выбросам напрочь закрыть дорогу. Выбросов же в сети великое множество, и возникают они по разным причинам.

Например, включился холодильник, т.е. сработало пусковое реле его компрессора. В момент включения компрессор (электродвигатель) потребляет ток, в десятки раз (в 20…40 раз) превышающий тот, что указан в паспорте. На этот миг в сети возникает “просадка’’ напряжения с последующим всплеском (рис.1) — вот и помеха!

Даже включение обычных лампочек в люстре приводит к возникновению, вроде бы, незаметных помех такого же характера. Они в момент включения потребляют ток, примерно в 10 раз больший номинального (пока спираль холодная).

Самое неприятное то, что амплитуда напряжения помехи может исчисляться сотнями, а то и тысячами вольт. Этого вполне хватит, чтобы “спалить” какое-либо чувствительное устройство.

Рис. 1. Напряжения с последующим всплеском.

Как же эту ситуацию предотвратить? Вот тут на арене и появляются сетевые фильтры питания! Они способны “проглотить” все вредные выбросы питающего напряжения.

Справедливости ради надо отметить, что медленные провалы напряжения ни один фильтр питания скомпенсировать не способен (для этой цели служат стабилизаторы напряжения).

Но наиболее опасными для аппаратуры являются все же импульсные помехи.

Принципиальная схема

На рис.2 приведена типовая схема сетевого фильтра питания. На ней показана трехпроводная (европейская) сеть питания: “фаза” — “ноль” (“нейтраль”) — “земля”. Сразу на входе фильтра стоит варис-тор VR1.

Его задача — подавить высоковольтные выбросы напряжения сети. При появлении такого выброса электрическое сопротивление варистора резко падает, и он замыкает через себя эту помеху, не позволяя ей пройти дальше. Следом включены дроссель Т1 и конденсаторы С1, С2, СЗ, образующие LC-фильтр.

Сопротивление дросселя возрастает с увеличением частоты тока, а конденсаторов падает, так что все высокочастотные помехи задерживаются или “стекают” в землю.

Помехи могут возникать не только между сетевыми проводами (“фазой” и “нейтралью”), их отфильтрует конденсатор С3, но и между “фазой” и “землей”, а также возможны помехи “нейтоаль» — “земля”. Для эффективного подавления таких помех служат конденсаторы С1 и С2.

Рис. 2. Типовая схема сетевого фильтра питания.

При отсутствии земли общая точка конденсаторов С1 и С2 “висит” в воздухе, что приводит к созданию ими и дросселем Т1 паразитного колебательного контура, который начинает излучать высокочастотное электромагнитное поле, становясь источником потенциальной опасности для расположенной рядом радиоаппаратуры.

Рис. 3. Схема сетевого фильтра без заземленных конденсаторов и связи с землей.

Поэтому в двухпроводной сети применяются фильтры без этих конденсаторов и связи с “землей” (рис.З). Типовая амплитудно-частотная характеристика (АЧХ) сетевого фильтра показана на рис.4. Из этого графикавидно, что чем выше частота помех, тем эффективнее они подавляются.

Рис. 4. График зависимости.

Стоит остановиться на одной особенности фильтров питания. Речь пойдет все о той же “земле”. Существует целый класс сетевых фильтров, у которых заземляющий провод не имеет никакой связи с внутренней схемой, кроме соответствующих контактов самих евророзеток и заземляющего контакта евровилки.

Этим достигается важное преимущество: при работе от сети с заземлением все розетки фильтра заземлены, как и положено. Но в случае отсутствия “земли” в сетевой розетке (типичный случай отечественной сети питания) все розетки фильтра объединены между собой по заземляющему контакту (естественно, сам фильтр при этом не заземлен). Почему это важно?

Представим, например, схему подключения различной периферии к компьютеру, показанную на рис. 5а (типичный случай — подключены принтер, сканер, внешний звуковой усилитель И Т.П.).

Это — идеальная схема: все подключено к заземленной сети питания, потенциалы корпусов устройств одинаковы (равны нулю), поскольку соединены с “землей”. В случае возникновения пробоя или повреждения изоляции любого из устройств “лишнее” напряжение уйдет в землю.

Рис. 5. Схемы подключения различной периферии к компьютеру.

Теперь возьмем схему соединений для случая сети без заземления (рис.5б). Как видно, провод заземления отсутствует, и единственной связью корпусов устройств является слаботочный интерфейсный кабель (точнее, его экранирующая оплетка).

При разности потенциалов корпуса компьютера и внешнего устройства (а такое наблюдается сплошь и рядом!) уравнительные токи, текущие от большего потенциала к меньшему, могут легко “выжечь” входные и выходные порты соединенных устройств.

Таких случаев встречается множество. Самый распространенный — выгорание входа или выхода звуковой карты в случае подключения ее к внешнему источнику сигнала или к усилителю звука.

Для решения проблемы нужно подключить эти устройства к “европейскому” удлинителю, даже не соединенному (за неимением) с внешней “землей” (рис,5в). Здесь электрические потенциалы всех устройств выровнены, сквозные токи выберут себе более легкий путь через заземляющие контакты евророзеток, и ничего страшного не произойдет.

Основные параметры сетевых фильтров

Сечение подводящих проводов. Чаще всего сетевой фильтр (рис.6) выпускается с сечением жил порядка 0,75 или 1 мм2. Такое сечение считается достаточным, поскольку максимальный ток нагрузки, на который рассчитывается фильтр, обычно не превышает 10 А.

На такой ток устанавливается и предохранитель. При необходимости можно найти сетевой фильтр повышенной мощности, сечение жил проводов которого достигает 1,5 мм2. Предохранитель у такого устройства — на номинальный ток 16 А.

Рис. 6. Типичный сетевой фильтр-розетка.

Длина подводящего провода сети. Стандартизованная длина сетевого провода фильтра-180 см. У отдельных моделей она может равняться 190 см, 300, а то и 500 см. Количество розеток. Обычно их 4…6 штук (рис.7).

Как правило, все розетки-с заземляющими “ушками” (типа “евро”). Встречаются фильтры с розетками разного типа (1 -универсальная и 4, 5 — “евро”, рис.8).

Рис. 7. Набор розеток.

Число и типы предохранителей. Предохранители включаются в сетевой фильтр для защиты от перегорания варисторов при больших импульсных помехах и отключения потребителей при коротком замыкании или длительной перегрузке нагрузочных цепей.

Для большей надежности отдельные изготовители, помимо термопредохранителей, устанавливают еще и самовосстанавливающиеся быстродействующие предохранители (на базе полупроводниковой металлоорганики).

Фильтры

Предназначены для подавления помех. Встречаются чисто емкостные и индуктивно-емкостные на основе LC-цепочек. Катушки сетевого фильтра бывают без сердечников или с ферритовыми сердечниками (лучше всего на ферритовых кольцах).

Добавочные устройства. Индикаторы включения и исправного состояния защиты на светодиодах или на неоновых лампочках светятся при включенном фильтре (или его отдельном канале) и гаснут, когда срабатывают предохранители. Разрядники (газовые) подстраховывают варисторы при больших амплитудах импульсных помех.

Любые электроприборы требуют правильной эксплуатации. В отношении сетевых фильтров тоже есть ряд правил безопасности. Фильтры противопоказано подключать друг к другу.

Рис. 8. Пример фильтра с евро-розетками.

Это может неоправданно увеличить ток в “земляном” проводе. Кроме того, к сетевым фильтрам нельзя подключать устройства с большими пусковыми токами (пылесосы, кондиционеры, холодильники и пр.). Не рекомендуется подключать сетевые фильтры к источникам бесперебойного питания, поскольку это может привести к повреждению схем защиты.

Самодельные сетевые фильтры

Нередко имеющиеся в продаже дешевые фильтры на самом деле фильтрами не являются. Например, фильтр-удлинитель (рис.9). Там внутри находится лишь варистор, ограничивающий кратковременные высоковольтные импульсы, которые иногда возникают в сети, и токовый размыкатель, срабатывающий при протекании большого тока (рис 10).

Рис. 9. Фильтр-удлинитель.

Рис. 10. Что внутри фильтра-удлиннителя.

На корпусе есть кнопка, которую нужно нажать, чтобы снова замкнуть размыкатель, если он сработал. Для превращения этого удлинителя в полноценный фильтр внутрь нужно встроить фильтрующие цепи.

На исходной схеме (рис.11а) S1 -токовый размыкатель, VR1 — варистор типа 471 (числом кодируется максимальное напряжение, а от диаметра зависит максимальная энергия подавляемого импульса).

Рис. 11. Схема фильтрующих цепей для встраивания в удлиннитель-розетку.

В доработанном варианте (рис. 11 б) добавляется RLC-фильтр. Катушки L1 и 12 вместе с конденсаторами С1 и С2 образуют LC-фильтр.

Индуктивное сопротивление катушек растет на высоких частотах. Чтобы ослабить и низкочастотные помехи, последовательно с катушками включены резисторы R1 и R2. Резистор R3 разряжает конденсаторы при отключении фильтра от сети. При сборке фильтра (рис. 12) варистор оставляется штатный (типа 471, диаметром 6…10 мм).

Чем больше сопротивление резисторов R1 и R2, тем лучше фильтрация, но больше их нагрев и потери напряжения в фильтре. Поэтому сопротивление резисторов выбирается в зависимости от суммарной мощности, потребляемой всеми теми устройствами, которые будут подключаться к фильтру (при указанных номиналах РНагр.макс=250 Вт).

Дроссели L1 и L2 — промышленные высокочастотные, типа ДМ-1 индуктивностью 50…100 мкГн. Конденсаторы — пленочные, типа К73-17 или аналогичные (импортные меньше по габаритам) емкостью не менее 0,22 мкФ (больше 1 мкФ тоже не нужно). Сопротивление резистора РЗ — не критично (от 510 кОм до 1,5 МОм).

Дополнительно на сетевой провод возле самого удлинителя желательно одеть ферритовую шайбу (удобнее всего разрезную на защелках — рис.13).

Рис. 12Сборка фильтра.

Рис. 13. Ферритовая шайба.

Другой вариант схемы помехоподавляющего сетевого фильтра приведен на рис. 14. Для большей эффективности он состоит из двух соединенных последовательно звеньев.

Первое (конденсаторы С1, С4, С5, С8, С9 и двухобмоточный дроссель 12) отвечает за подавление помех частотой выше 200 кГц.

Второе звено (двухобмоточный дроссель И с остальными конденсаторами) подавляет помехи, спектр которых простирается ниже указанной частоты (вплоть до единиц килогерц).

Рис. 14. Схема помехоподавляющего сетевого фильтра.

Благодаря магнитной связи между обмотками дросселей происходит подавление синфазных помех (тех, что наводятся одновременно на оба сетевых провода или излучаются ими).

Поэтому обмотки каждого дросселя должны быть одинаковыми и симметрично намотанными на магнитопроводы. Важно обеспечить правильную фазировку обмоток.

Их начала обозначены на схеме точками. Дроссель L1 намотан на ферритовом магнитопроводе Ш12×14 с самодельным каркасом из злектрокартона сложенным вдвое проводом ПЭЛШО 00,63 мм. Обмотка содержит 87 витков. Марка феррита, к сожалению, неизвестна. Измеренная прибором 1.Р235 индуктивность каждой обмотки — около 20 мГн.

Для дросселя 1.2 использован броневой магнито-провод Б22 из феррита 2000НМ1. Его обмотки содержат по 25 витков и намотаны тем же проводом и таким же образом, что и обмотки дросселя L1. Индуктивность каждой обмотки дросселя L2 — 120 мкГн.

Конденсаторы первого звена фильтра — слюдяные. Поскольку малогабаритных конденсаторов такого типа требующейся для фильтра емкости на нужное напряжение не существует, пришлось соединить попарно-параллельно конденсаторы КСО-5 меньшей емкости.

Аналогичное решение, но с попарно-последовательным соединением конденсаторов С2, С3 и С6, С7 (пленочных зарубежного производства), принято и во втором звене фильтра для обеспечения нужного рабочего напряжения.

Подключенные параллельно конденсаторам резисторы R1…R4 выравнивают приложенные к ним напряжения и обеспечивают быструю разрядку всех конденсаторов после отключения фильтра от сети. Конденсатор С9 — типа К78-2. Плата фильтра помещена в заземленную металлическую коробку.

Материал подготовил В. Новиков. РМ-07-12, 08-12.

Источники информации:

Классификация отклонений в сети переменного тока

Любую нестабильность напряжения в сети переменного тока можно разделить на следующие виды:

  • изменение значения амплитуды;
  • искажение синусоиды;
  • импульсные помехи;
  • высокочастотные помехи;
  • уход частоты.

Изменение значения амплитуды – это ни что иное, как изменение напряжения. По стандартам, нормально допустимые отклонения напряжения – ±5 %, или 209-231 В. В этом диапазоне все устройства могут эксплуатироваться без опасений за их повреждение или ухудшение характеристик. Определены также предельно допустимые отклонения – ±10 %, 198-242 В. В этом режиме большинство электроприборов сохраняют свою функциональность. Измерить значения напряжения в сети можно с помощью стрелочного вольтметра или хотя бы цифрового мультиметра.

Искажения синусоиды могут вноситься различными некачественными преобразователями или импульсными блоками питания в условиях перегруженной сети. Чаще всего срезаются её «верхушки», появляются гармонические искажения. Больше всего к таким искажениям восприимчивы высокоточные измерительные устройства, асинхронные электродвигатели.

Импульсные помехи представляют собой кратковременные (10-6 с) пики большой амплитуды (вплоть до 10 кВ). Они могут возникнуть из-за природных факторов (удар молнии) или техногенных (переходные процессы при переключения большого количества потребителей в условиях перегрузки, неисправное оборудование). Импульсным помехам сильно подвержена большая часть электроники – при таких резких скачках полупроводниковые элементы в ней могут просто выгореть.

Наконец, помехи высокочастотные – флуктуации небольшой амплитуды (максимум десятки вольт) различной частоты (от 100 Гц до 10 МГц). Создаются импульсными БП, сварочными аппаратами, электродвигателями. Такие помехи не опасны, но могут привести к проблемам с использованием, к примеру, Hi-End аудиотехники. При недостаточно хорошей фильтрации в её блоке питания, высокочастотные помехи будут восприниматься на слух как треск, шипение и т.п.

Отклонение частоты происходит при перегрузке сети и генератора. Слишком высокие мощности потребителей заставляют генератор вращаться быстрее, тем самым повышая частоту переменного тока. К изменению частоты особенно чувствительны электродвигатели переменного тока. Различная электроника (например, старые телевизоры с ЭЛТ) используют частоту 50 Гц как опорную, и изменения даже на 0,1 Гц уже приводят к искажениям изображения.

Теперь, зная суть и причины некачественного питающего напряжения, разберёмся, как от него помогут защититься сетевые фильтры и стабилизаторы.

Принцип работы защитных устройств

Сетевой фильтр

Сетевой фильтр похож на обычный удлинитель, но внутри него установлена плата фильтрации. Качественная плата фильтрации содержит:

  1. Варисторы: при резком повышении напряжения (импульсные скачки) они резко снижают своё сопротивление (с сотен мегаом до десятков ом), фактически закорачивая цепь и принимая всю нагрузку на себя. При этом может сгореть либо сам элемент, либо плавкий предохранитель, подключенный последовательно с ним, но подключенные приборы останутся целы.
  2. LC-фильтр: цепь из катушек индуктивности и конденсаторов, поглощает высокочастотные помехи.
    Многоразовые термопредохранители: могут использоваться взамен плавких. Выполнены в виде кнопки, вынесенной на корпус. При превышении допустимого тока или КЗ такой предохранитель отжимает кнопку и разрывает цепь. Для восстановления предохранителя достаточно нажать кнопку обратно.
  3. Газоразрядники: иногда параллельно с варистором ставятся газоразрядные электроды, которые принимают на себя большие напряжения (несколько киловольт), для быстрого устранения разницы потенциалов.

Все сетевые фильтры оборудованы заземлением. Уважающий себя производитель укажет, по каким линиям установлена варисторная защита. Если варистор установлен только между землёй и фазой, для работы такого фильтра обязательно требуется заземление. Если указана защита «фаза-ноль», заземление необязательно, весь импульс уйдёт на ноль.

Сетевой фильтр — сложное устройство, включающее в себя специфические электронные компоненты для эффективного подавления импульсных и высокочастотных помех, защиты от перегрузки и короткого замыкания.

Качественный фильтр видно сразу — это солидное, достаточно массивное устройство, нафаршированное электроникой. Цена хорошего сетевого фильтра начинается от 800-1000 рублей.

Исходя из схемотехники, сетевой фильтр может справиться только с двумя видами помех: высокочастотными и импульсными. Очевидно, что такое устройство не способно справляться с длительными перепадами напряжения и искажением его формы. Здесь уже потребуется стабилизатор.

Стабилизатор

Если напряжение в вашей местности долгое время выходит за границы предельно допустимых отклонений, единственный выход – это стабилизатор. Такие устройства выдают (почти) постоянное значение амплитуды на выходе при большом диапазоне входных значений. Рассмотрение их схемотехники выходит за рамки статьи, но интересующимся могу посоветовать заглянуть сюда.

Если вкратце, то выравнивание напряжения осуществляется четырьмя различными способами:

  1. переключением обмоток трансформатора (через реле или симисторы);
  2. электромеханическим движком на автотрансформаторе;
  3. накоплением энергии с использованием резонанса в ферромагнетиках;
  4. с помощью инвертора.

У каждой из этих реализаций есть свои плюсы и минусы, определённая область применения. Такие устройства способны обеспечивать постоянное напряжение для питания электроприборов. Инверторные стабилизаторы способны ещё устранять искажения формы синусоиды и уход частоты. Вообще, инверторные стабилизаторы являются самыми многофункциональными, точными и надёжными, но и цена их наиболее высокая. Их еще называют стабилизаторами двойного преобразования.

Абсолютно все качественные стабилизаторы имеют и встроенный сетевой фильтр, поэтому спасают от импульсов и высокочастотных помех. Таким образом, покупая стабилизатор, вы одновременно получаете и сетевой фильтр.

Начальные простые модели стабилизаторов могут стоить так же, как хорошие сетевые фильтры. Однако надёжные устройства значительно (в десятки раз!) дороже. Цена на стабилизатор в основном зависит от его схемотехники и номинальной мощности.

Что выбрать?

Ответ на вопрос зависит от: а) качества переменного тока в вашем доме; б) конкретного потребителя. Если вы твёрдо знаете, что напряжение у вас всегда держится около нормы в 220-230 В, то сетевого фильтра достаточно для защиты любого потребителя.

К сожалению, стабильность в сетях России – это скорее редкость, чем правило. Воспользуйтесь мультиметром и убедитесь в этом сами. Вряд ли вы всегда будете наблюдать нормальное напряжение, особенно где-нибудь в сельской местности.

Однако, не стоит тут же бежать за стабилизатором: не всей технике сегодня требуется стабильное значение в 220 В. В нём однозначно не нуждаются нагревательные приборы с ТЭНами, а также устройства непродолжительного использования с большими пусковыми токами (например, насосы, электроинструмент).

Большинство современной электроники оснащено импульсными блоками питания, способными работать в широком диапазоне: от 90 до 260 В и даже больше. Схемотехника таких БП всегда выдаёт постоянное стабильное напряжение для внутренних элементов схемы. Все компьютеры питаются от таких БП, поэтому, вопреки расхожему мнению, стабилизатор для компьютера не нужен. Конечно, здесь многое зависит от стоимости и класса компьютерного блока питания: дешёвые модели могут иметь более узкий диапазон или просто плохо работать даже при небольших отклонениях.

Телевизоры, мониторы, системные блоки компьютеров, светодиодные лампы и светильники, зарядники для ноутов, планшетов, телефонов и прочая бытовая техника, в состав которой входят импульсные БП, практически никогда не нуждается в стабилизаторах напряжения.

Каким устройствам действительно нужен этот агрегат? В первую очередь, это приборы продолжительного использования без встроенных блоков питания, в частности на базе электродвигателей: холодильники, насосные станции, кондиционеры и др. При повышении напряжения эти приборы начинают работать с перегрузкой, сильнее греются, быстрее изнашиваются.

Особенно чувствительны к перепадам напряжения некоторые модели газовых котлов. Но далеко не все! Поэтому перед тем, как покупать стабилизатор для газового котла, загляните в инструкцию к котлу.

Если в документации указан узкий рабочий диапазон входных напряжений (±5…10% от номинала), а напряжение в розетке прыгает значительно сильнее, то без стабилизатора, увы, не обойтись.

Подробнее о том, нужен стабилизатор газовому котлу или нет, можно узнать из этой статьи.
А вам расскажут, почему телевизору стабилизатор совсем не нужен.

Если вы по-прежнему пользуетесь лампами накаливания и вас раздражает их мигание при скачках в электросети, то их тоже можно подключить через стабилизатор. Конкретно для этого случая очень советую стабилизаторы инверторного типа (например, ИнСтаб от Штиля).

Наконец, если любое устройство (пусть даже ЖК-телевизор или ПК с импульсными БП) периодически отключается при падениях напряжения – стабилизатор ему всё-таки нужен.

Какую роль играет

Частые переключения реле, запуск и остановка асинхронного двигателя внутри самой машины, в свою очередь, вызывают постоянные изменения токов, которые нельзя пропускать во внешнюю электрическую сеть, чтобы не повредить другое электрооборудование, подключённое к ней (телевизоры, компьютеры, микроволновки и пр.) Данное устройство улавливает эти перепады и «сбрасывает» избыточные токи на заземление. Сетевой фильтр стиральной машины предохраняет от перепадов напряжения не столько саму машину, сколько внешнюю электрическую сеть от неё.

Сильное падение напряжения в сети может привести к сгоранию асинхронного двигателя, потому что он перестаёт вращаться, а ток продолжает поступать на его обмотку. В данном случае это защитное устройство сразу выключает стиральную машину. Если же перепад напряжения имеет непродолжительный характер, то фильтр использует заряд своих конденсаторов, чтобы поддержать нормальную работу машинки. Именно поэтому не рекомендуется эксплуатировать стиральную машину без него.

В случае поломки, сетевой фильтр можно заменить только целиком в сборе, так как его детали залиты специальным водонепроницаемым составом, не пропускающим ток.

Это довольно надёжные устройства и они редко ломаются, но иногда такое случается. Чаще всего это происходит из-за снижения ёмкости конденсаторов внутри фильтра со временем. Реже – из-за сильного скачка напряжения, который может вызвать пробой.

Ни в коем случае нельзя выключать работающую стиральную машину путём выдёргивания её вилки из розетки – это тоже может повредить фильтр!

Достать и заменить фильтр помех можно самостоятельно или при помощи специалиста, но как понять, что он сломался?

Диагностика неисправностей

Большинство современных стиральных машин устроены таким образом, что при выходе из строя фильтра помех они автоматически прекращают работу и не запускаются до тех пор, пока сломанная деталь не будет заменена. Поэтому самым первым свидетельством поломки является именно невозможность включения машины. Конечно, причиной этому могут служить и другие неполадки, простейшие из которых – это повреждение сетевого шнура или его вилки. Но если с ними всё в порядке, то следующим на очереди идёт именно фильтр помех.

Также, если машинка вдруг начала биться током, появился запах горелой изоляции или машина самопроизвольно стала менять режимы работы во время стирки, (независимо от выбранной вами программы), всё это тоже говорит о неисправности сетевого фильтра.

Если у вас есть мультиметр (прибор для измерения сопротивления, напряжения и силы тока), то в данной ситуации стоит воспользоваться им, чтобы не вызывать мастера:

  1. В первую очередь нужно прозвонить все контакты попарно. Сопротивление должно быть около 680 кОм.
  2. Далее измерьте входное сопротивление на штекере. Сопротивление также должно быть около 680 кОм, хотя может немного отличаться.
  3. Состояние конденсаторов проверить достаточно сложно из-за того, что они залиты компаундом. Но можно попытаться измерить ёмкость между разными входами. Её значение должно быть около 0,47 мкФ.

Если, прозванивая контакты, вы заметите, что сопротивление равно бесконечности или ёмкость стремится к нулю, значит, устройство повреждено и его нужно менять.

Ремонт сетевого фильтра | Ремонт своими руками

Здравствуйте! В этой статье рассмотрим ремонт сетевого фильтра своими руками. Он применяется для подключения к бытовой сети группы потребителей(компьютер, принтер, сканер, источник бесперебойного питания, телевизора и т.д.). Имеет обычно не менее шести розеток и встроенную защиту по перегрузке.

На фото ниже показан сетевой фильтр, который попал ко мне на ремонт.

Прежде чем приступить к его ремонту хочу немного рассказать о основных неисправностях сетевых фильтров.

В первую очередь сетевой фильтр-это силовой элемент в вашей домашней сети. То есть он воспринимает всю нагрузку, суммарно потребляемую всеми бытовым приборам, подключенные к нему.

Это нужно помнить в первую очередь.

К примеру если на сетевом фильтре написано 220 вольт 10 ампер, то это значит что к нему можно подключить только столько бытовой техники, которая в сумме потребляет не более 10 ампер(2,2 кВт).

Поэтому чтобы преждевременно не вывести сетевой фильтр из строя, следует строго придерживаться предписаний его производителя.

Помню встречался с такими случаями, когда в сетовой фильтр подключали одновременно электроплитку, кипятильник и пылесос(суммарная нагрузка около 5 кВт!).

На такую нагрузку он точно не рассчитан, при этом питающий провод сетевого фильтра начинал сильно греться и в итоге плавиться. Не делайте так, если не хотите устроить в квартире пожар!

Неисправности сетевого фильтра: -отгорание провода в вилке питания в результате плохого контакта при нагрузке -подгорание контактов выключателя сетевого фильтра -повреждение автоматического защитного термопредохранителя

-перегорание дорожек на печатной плате сетевого фильтра

При включении шнура питания сетевого фильтра в сеть и включении выключателя светодиод индикации включения в сеть мигал и из выключателя слышился небольшой треск. Ну тут часто виноват сам выключатель питания сетевого фильтра.

Для того чтобы его проверить и сделать заключение о его исправности или наоборот, необходимо разобрать корпус сетевого фильтра. По обычаю он состоит из двух половинок, соединенных между собой при помощи саморезов.

На фото ниже я посторался показать их место расположение.

При внимательном осмотре саморезов выяснилось следующее: три самореза под крестовую отвертку, а три под плоскую. Все бы хорошо, да не совсем. Саморезы под плоскую отвертку, как оказалось, имеют хитрую конструкцию, которая позволяет их только закрутить. Они представляют собой подобие храповика под пусковую ручку для автомобилей.

Поэтому открутить их так просто не удалось. Но как говорится, нет безвыходных ситуаций. Особенно для тех, кто хорошо знает волшебные слова русского языка:)).

Вот применяя их и вспоминая «добрым словом» изготовителей сего чуда саморезов и манипулируя простой плоской отверткой, их понемногу открутил.

Для этого приходилось более сильнее прижимать отвертку к саморезу и создавать так называемое торцевое трение жала отвертки об хитрый саморез.

Рассоединяем две половинки корпуса сетевого фильтра и видим следующую картину

На ней видим сами шесть розеток с зануляющими шинками, термопредохранитель с кнопкой включения, плату сетевого фильтра. Нам необходимо добраться до выключателя питания. Для этого открутите два самореза крепления печатной платы.

Переворачиваем аккуратно плату и видим сам выключатель.

Нам необходимо его выпаять. На фото ниже я показал место пайки ножек выключателя сетевого фильтра.

Выпаиваем выключатель и кладем его на стол.

Ремонт выключателя сетевого фильтра выполняется в следующем порядке. Необходимо при помощи тонкой плоской отвертки вывести фиксатор кнопки из корпуса выключателя с двух сторон и вытащить сам верх кнопки.

На фото ниже видно, что под ней расположены подвижные контакты из пружинистой стали.

Запомните их расположение и снимите их.

Под ними в глубине вы увидите неподвижные контакты.

На обоих фото хорошо видно, что контакты сильно подгорели. Берем мелкую наждачную бумагу и аккуратно зачищаем подвижные контакты. Чтобы зачистить в глубине неподвижные контакты удобно использовать расплетенный на конце мотоциклетный тросик.

После того как все зачистили, устанавливаем подвижные контакты на место и ставим верхнюю часть выключателя до щелчка.

Впаиваем выключатель и собираем сетевой фильтр в обратном порядке.

Теперь вы знаете как отремонтировать сетевой фильтр своими руками. Пользуемся и радуемся произведенному ремонту! Пока!

DIY. Ремонт предохранителя защитного устройства APC медной проволочкой ) — DRIVE2

Еще со времен школы и древних компов-гробиков было у меня такое защитное устройство:

Кажется это называлось «сетевой фильтр».

Сейчас я использую его фактически как удлинитель резветвитель — у всех современных устройств защита встроенная. На так как у него очень качественные разетки, и расположены они особым образом, так, что даже габаритные вилки не мешают друг другу, именно как удлинитель он очень удобен!

И вот вставил я в него вилку и случилось короткое замыкание. )

В нем есть встроенный защитный автомат на 10 ампер, у которого выскакивает кнопка в случае срабатывания. После устранения проблемы ее нужно нажать и все опять будет работать.

Но этот автомат не сработал, кнопка не выскочила:

Автомат не сработал, кнопка на месте

Кнопка на месте, но ничего не работает. Нужно разбирать.

Будем разбирать )

Вижу что винты под торкс, попробовал несколько разных размеров — ни один не подходит!

Присмотрелся повнимательнее — там торкс с пином! Типа защита от детей. )

Винт не простой а с пином, не позволяющим использовать обычные отвертки Торкс

Продаются отвертки под такой винт — если будете покупать, покупайте именно такие, с отверстием под пин — они подойдут и для обычных, и таких защищенных винтов.

Torx Tamper Resistant — TR

Я до сих пор не купил такой набор, а все эти антивандальные винты легко выкручиваются обычной подобранной под размер отверткой:

Torx TR легко выкрутить обычной отверткой с плоским шлицем )

Вынул я эти винты, но корпус все равно не открывался.

Смотрим дальше — корпус на защелках:

Защелка

Но не обычных, которые сами расщелкиваются, когда поддеваешь края корпуса, а защелках с фиксатором, который сперва нужно отщелкнуть.

Вот так они выглядят:

Защелка…

…вставляется в паз с выступами

Нужно что-нибудь плоское, чтобы отщелкнуть эти защелки. Отвертка большая не лезет, маленькой не удается подцепить всю площадь защелки.

Мне под руку попался щуп для калибровки зазора клапанов на бензиновых газонокосилках, бензопилах и т.п.

Щуп для измерения зазоров

Он достаточно широкий и при этом тонкий.

Отщелкиваем им все защелки:

Плоским широким предметом отщелкиваем защелки

Наконец то корпус разобран!

Первой моей мыслью было что автомат заклинило — то есть он разомкнулся, но кнопка не вылетела.

Прозваниваем его:

Есть контакт! Все в порядке!

Но он в полном порядке, прозванивается.

Смотрим дальше, и видим дополнительный керамический предохранитель на 20 ампер — последняя линия защиты. Прозваниваем — не работает!

Плавкий керамический предохранитель перегорел

Почему то он сработал раньше. Может он лучше реагирует именно на короткие замыкания или автомат на 10 ампер не исправен? Не знаю…

Интересно, что на розетки стоит дифавтомат на 16 ампер, но эта плавкая вставка на 20 ампер сработала раньше. Это действительно быстрые предохранители.

Поискал я такие предохранители в магазинах типа Леруа и не нашел.

Когда-то подобные предохранители использовались в домах вместо защитных автоматов, но сейчас они — редкость.

Керамический плавкий предохранитель на 20 ампер

Увидел что такие можно купить в радиомагазинах. Но это нужно ехать специально — куплю позже парочку.

А пока что, сидеть без компьютера, зарядок и настольных ламп?

Нет!

Тут на помощь приходит колхоз! )

Гуглим и находим это:

Медная проволочка подходящего диаметра позволит временно восстановить предохранитель! )

Значит можно проволочкой 0.5 мм временно восстановить предохранитель! )

Нахожу у себя многожильный проводок и измеряю:

0.35 мм — не подходит

Не подошел, беру еще один:

0.5 мм — то, что нужно! )

Подходит! )

Снимаем изоляцию так, чтобы была проволочка чуть длиннее предохранителя, откусываем:

Проволочка готова! )

А теперь ставим предохранитель назад в держатель так, чтобы он плотно прижал проволочку к лапкам держателя.

Все работает! )

Предохранитель прижимает медную проволочку к лапкам держателя. В случае чего эта проволочка перегорит.

Конечно это не очень хорошо. Другие тепловые условия у проволочки, и искры в случае сгорания проволочки будут не внутри керамического корпуса, а лететь во все стороны. Но это ведь временный ремонт, пока не будет куплен новый предохранитель, и защиты мы на это время прибор не лишаем. )

Сетевой фильтр стиральной машины автомат. Как подключить и для чего нужен

Нынешняя стиральная машинка так модифицирована и устроена, что многие уже забыли о тех временах, когда стирали несколько партий белья в одной и той же воде.

Современная стиралка хороша во всем и стирка благодаря ей превращается в праздник, если только не случаются неожиданности в плане неисправностей и поломки.

Машинка без электричества работать не сможет, но в этом кроется некая опасность.

К сожалению часто происходят скачки напряжения в сети и они способны вывести технику из строя. Чреваты такие перепады электричества ремонтом стиральной машины.

Предназначение сетевого фильтра

Чтобы исключить возможность поломки техники из-за скачков электричества, можно заблаговременно защитить технику.

С этой задачей прекрасно справится сетевой фильтр для стиральной машины. Он защитит от перепадов и падения напряжения в сети, заглушая импульсные и высокочастотные помехи.

Сетевой фильтр – это не только удлинитель с некоторым количеством розеток и предохранителем.

Фильтр может встраиваться в технику на этапе производства или приобретаться как дополнительная деталь защиты и подключаться к прибору через источник питания.

Встроенный сетевой фильтр

Современная стиральная техника довольно сложный прибор, но между тем чувствительный, например, к перепадам тока в сети.

Поэтому надежная защита и стабильность ей требуются в первую очередь, потому что в противном случае стиральная машина без сетевого фильтра, получив высокие или заниженные импульсы, может сгореть.

Особенно если это машинка автомат с сенсорным управлением. Берем во внимание факт чувствительности таких моделей, производитель сам в процессе производства снабжает машинку сетевым фильтром. Находится он там, где начинается электрический шнур. При поломке внутренний фильтр не ремонтируется, а подлежит замене. Заменяется деталь на оригинальную запчасть, что не всегда легко сделать.

Внутренние фильтры различаются по степени защиты в зависимости от производителя и модели подключаемой техники. Уровень защиты связан с:

  • максимальной нагрузкой и максимальным током;
  • проходимым порогом напряжения;
  • номинальным током;
  • временем реакции после скачка напряжения на отлючение.

Внешний сетевой фильтр

Такой прибор может уберечь технику от короткого замыкания и скачка тока, благодаря предохранителю, перекрыв поступление электричества.

Чем хорош удлинитель и как подобрать сетевой фильтр для стиральной машины?

Производители предлагают удлинители с разным количеством розеток и видами защиты:

  1. базовый;
  2. профессиональный;
  3. продвинутый.

Некоторые модели усовершенствованы дополнительными приспособлениями в виде кнопки включения или отключения на каждой розетке или имеют защиту от детей.

Большое количество розеток на фильтре-удлинителе актуально при наличии нескольких приборов, стоящих рядом. Такой фильтр довольно мощный, но и более дорогостоящий.

Различие может быть в длине шнура удлинителя. На это нужно обратить внимание при покупке и заранее рассчитать необходимую длину.

Максимальная нагрузка важный показатель.

Самым дорогостоящим фильтром считается тот, который может выдержать удар молнии.

Если брать профессиональную защиту, то показатель скачков энергии, поглощаемый фильтром – 2500 Дж, а у простого этот показатель равен 960 Дж.

В фильтре может находится сразу несколько предохранителей, но один из них обязательно должен быть плавким, а остальные делятся на быстродействующие и тепловые.

Защитный механизм некоторые производители наделяют светодиодным индикатором, что позволяет визуально оценить работоспособность прибора.

Чего делать нельзя, используя защиту внешним сетевым фильтром?

  1. Прибор, работающий через фильтр не должен быть мощностью больше 3,5 кВт.
  2. Нельзя включать удлинитель в сеть с 380 В.
  3. Одновременное подключение подобных приборов опасно.
  4. Обязательное условие при использовании фильтра – заземление розетки.

Как заменить предохранитель в сетевом фильтре — Сделай все сам

by admin · 22.09.2017

Даже в дюже добротных сетевых фильтрах может сгореть либо заклинить предохранитель. Если пилот выбрасывать ничтожно, дозволено попытаться восстановить работоспособность, поставив новейший предохранитель. Надобно только обнаружить комплектующие для замены.

Отчего сетевые фильтры выходят из строя

Две основные поводы, по которым может выйти из строя предохранитель в сетевом фильтре — это перегрузка и повышенное напряжение.

Сетевые фильтры предуготовлены для охраны оргтехники от различного рода колебаний в электрической сети, а следственно включать в них приборы высокой мощности не стоит.В неисправном предохранителе либо не слышен щелчок при переключении, либо кнопка совсем статична.

Допустим и такой вариант: при включении сетевого фильтра в розетку происходит короткое замыкание из-за сработавшего одноразового варистора, установленного параллельно нагрузочным контактам.

Отремонтировать сетевой фильтр нетрудно, значительно сложнее обнаружить надобные комплектующие. Для дорогих фильтров они продаются отдельно, а в случае с недорогими придется искать иной неисправный сетевик и извлекать из него предохранитель.

Замена предохранителя

Корпус пилота необходимо разобрать, выкрутив несколько саморезов. Они могут быть расположены в пазах розеток либо на тыльной стороне фильтра, могут быть закрыты заводскими наклейками. Некоторые корпуса имеют дополнительную фиксацию на пластиковых защелках, потому вскрытие фильтра надобно проводить с максимальной осторожностью.

Предохранитель установлен на одном из питающих проводов, за исключением желто-зеленого — это провод заземления. Соединение может быть исполнено пайкой либо посредством винтового зажима. В последнем случае все примитивно: винты следует отпустить и извлечь ветхий предохранитель, после этого установить новейший.

Если контакты надобно паять, то время нагрева не должно превышать полторы секунды, напротив корпус может расплавится и контактную группу заклинит. Если заменить предохранитель нечем, то два контакта дозволено примитивно объединить отрезком провода, но при этом сетевой фильтр превратится в обыкновенный удлинитель.

В ветхих моделях сетевых фильтров применяются одноразовые трубчатые предохранители со стеклянным корпусом. В этом случае сгоревший предохранитель надобно легко поменять на новейший, с таким же значением максимального тока.

Замена либо удаление сгоревшего варистора

Замену предохранителя в сетевом фильтре дозволено не делать, если поводом поломки оказался сгоревший варистор.

Аналог ему дозволено подобрать на точке продажи радиодеталей, но необходимо извлечь неисправный элемент и взять его с собой как пример.

Сетевой фильтр будет трудиться и без варистора, но следует помнить, что в этом случае не будет охраны отходящих линий от повышенного напряжения.

Совет 2: Что такое сетевой фильтр и для чего он нужен

Перепады напряжения в сети, высокочастотные помехи способны вывести из строя компьютеры и иную технику. Нагрузка на электросеть непрерывно растет из-за увеличения используемых людьми устройств, следственно вопрос устойчивости напряжения дюже актуален.

Что такое сетевой фильтр и как он работает

Высокая нагрузка на электросеть, изношенность сетевого оборудования, сбои в работе электрических подстанций, грозовые разряды, удары молнии возле сетей электропередач — все это приводит к перепадам напряжения. Для предотвращения неприятных последствий таких прыжков в быту и в промышленности используются сетевые фильтры.

Сетевой фильтр работает, пропуская переменный ток и фильтруя при этом возникающие высокочастотные и импульсные помехи, тем самым он охраняет подключенные через него к сети приборы. Множество стандартных сетевых фильтров состоят из 2-х элементов: это варистор и LC-фильтр.

Варистор представляет собой полупроводниковый резистор, преобразующий энергию импульсных помех в тепловую. На него поступает такое же напряжение, как на охраняемое им устройство, от того что работают они параллельно. Чем выше подаваемое на итоги варистора напряжение, тем ниже в нем сопротивление.

В типичных условиях, при отсутствии импульсных помех и обыкновенном напряжении в сети питания, через варистор проходит ток малой силы. Когда же в сети возникает толчок высокого напряжения, сопротивление варистора круто снижается, и в это время через него протекает ток крупной силы.

Такой элемент, как LC-фильтр, предуготовлен для подавления высокочастотных помех (100-100 тысяч ГЦ), которые, провоцируя искажение синусоиды переменного напряжения в сети, вызывают перебои в работе электрооборудования. Источниками высокочастотных помех могут выступать разные сильные электрические устройства.

Такое устройство сосед может подключить к сети, а скажется это на вашей технике. В сетевых фильтрах различных марок и моделей используются LC-силуэты различной мощности, которая измеряется в децибелах. L — это катушка индуктивности, а С — конденсатор.

Отличия различных моделей

Фильтры могут отличаться числом розеток (1-8) для подключения устройств. В любом случае, отличнее не подключать много приборов единовременно. Сетевой фильтр, помимо его основного назначения, применяется и как удлинитель, следственно обратите внимание на длину шнура.

Некоторые модели фильтров оснащены индикаторами работоспособности системы — светодиодами. Если одно из устройств выходит из строя, светодиод отключается. Существует наивысшее значение тока толчка помехи, тот, что фильтр горазд пропустить через себя, дабы при этом не повредился сам фильтр и подключенная к нему аппаратура.

Существует также максимально возможная нагрузка (всеобщая мощность всех подключенных к фильтру электроприборов), при превышении которой механически сработает предохранитель и сетевой фильтр отключится.

Подбирайте модель, исходя из своих надобностей: одни фильтры предуготовлены для дома, другие — для офиса, третьи — для использования при повышенных требованиях к устойчивости напряжения.

Сетевой фильтр — устройство, для чего нужен. Защищают ли сетевые фильтры и нужны ли они, если нет заземления

Сетевой фильтр (Surge Protector — eng.)– недорогое и достаточно простое устройство для защиты электронной техники от сетевых, высокочастотных, низкочастотных, импульсных помех, перегрузок по току, а так же от короткого замыкания.

На специальной плате в корпусе фильтра расположены элементы для защиты.

Для защиты от импульсных токов применяются варисторы, которые подключены параллельно подключаемому оборудованию.

В случае резкого импульсного скачка, сопротивление варистора резко увеличивается и энергия импульса преобразуется в тепловую энергию (что в некоторых случаях разрывает варистор), защищая оборудование, если помеха была поглощена варистором полностью.

Для улучшения фильтрации импульсных помех, в паре с варисторами иногда применяются «газоразрядники» (замечены в Pilot GL, Pro). Также они могут применяться и отдельно.

Качественный сетевой фильтр:

Для фильтрации высокочастотных помех (радиопомеха) применяется LC-фильтр. Помехи данного типа могут нарушать работу электронного оборудования (в основном высокоточного).

Создаются они электродвигателями, сварочными аппаратами, генераторами, электро-разрядниками газовых плит & etc. Эффективность фильтрации измеряется в Дб. Чем показатель выше тем лучше.

Фильтр может включать в себя катушки индуктивности и конденсаторы (вместе или порознь не важно). Они помогают улучшить долговечность, стабильность работы, уменьшить нагрузку на внутренние системы фильтрации аудио-видео и компьютерной техники.

Также, в сетевых фильтрах применяются ограничители тока по типу «кнопка», которые разрывают питание, если превышен допустимый потребляемый ток. Хотя в более дешёвых версиях, завязка идёт не на потребляемую мощность, а на температуру.

Ещё, во многих разновидностях фильтров применяются дополнительные плавкие предохранители, которые в придачу страхуют варисторную защиту. В случае их срабатывания, требуется вскрытие устройства и замена элемента на новый.

Защищает ли фильтр от помех, если нет заземления на заземляющем контакте?

Хорошему сетевому фильтру не так важно, есть ли заземление или нет.

Всё же в спецификациях фильтра должно быть обозначено – «защита 3-х фаз», либо «фаза-ноль, фаза-земля, ноль-земля защита».

Это обезопасит вашу технику от импульсных скачков и означает, что на каждую из фаз параллельно впаян варистор. Даже если не будет заземляющего контакта, «фаза-ноль» будет фильтровать импульсные скачки.

Последует небольшое ухудшение характеристик, но фильтрация всё равно будет происходить.

Примечательно, что LC-фильтру, если таковой имеется, не нужна «земля». Он будет фильтровать высокочастотные помехи в штатном режиме.

Защиты от перегрузки и короткого замыкания — будут функционировать в штатном режиме и без заземления.

О псевдо фильтрах вида «удлинитель с кнопкой» или с какими сетевыми фильтрами связываться не стоит.

Отличить довольно просто.

Бросаются в глаза низкой ценой, не известностью производителя, невнятными характеристиками фильтрации на коробке, либо их отсутствием.

В названии таких фильтров, часто встречаются слова «Optimal, Standart, Based, SE, Basic». Цена колеблется в районе 3-10 $. Такие фильтры лучше обходить стороной.

С таким же успехом можно использовать обычные удлинители с кнопкой, которые значительно дешевле.

Данные фильтры, защитят в лучшем случает от перегрузки (при наличии термопрерывателя). Иногда содержат один варистор, посаженный на заземляющий контакт. Потому отсутствии заземления — бесполезны.

Связываться с ними не стоит, так как они обычно не имеют никаких фильтрующих элементов, кроме предохранителя на 25-30А, который сгорит в случае серьёзного КЗ и не спасёт технику. Он может защитить только от возможного пожара, в редких случаях.

yourmicrowell.ru

Предохранитель – является элементом защиты электрической цепи. В наше время, практически все электрические аппараты оснащены такими элементами и микроволновые печи, тоже не исключение. Существует много типов предохранителей, отличающихся друг от друга принципом срабатывания, и один из них – плавкая вставка.

Для электрической защиты, в микроволновых печах применяется именно этот тип предохранителей — плавкий предохранитель. Принцип действия плавкого предохранителя, основан на металлургическом эффекте. Такой предохранитель, в своей конструкции содержит нить из легкоплавкого материала – металла.

При превышении допустимой величины тока, протекающего через эту нить, нить разогревается до температуры плавления металла, из которого изготовлена, и разрушается. При этом электрическая цепь разрывается и устройство обесточивается.

Допустимая величина тока, которую нить способна пропустить через себя, без разрушения, напрямую зависит от ее сечения и свойств материала изготовления. Для защиты соседних элементов конструкции электрической аппаратуры от брызг расплавленного металла, образующихся в момент разрушения нити, нить помещается в, стеклянную или керамическую трубку.

А, для удобства монтажа, на эту трубку, с торцов, надеваются металлические колпачки, которые являются контактами предохранителя. Именно таким, в виде трубки с блестящими колпачками, мы сегодня привыкли видеть предохранитель.

Конструкция микроволновой печи, чаще всего содержит три плавких предохранителя. На Рисунке 1 изображен один из вариантов расположения предохранителей внутри печи.

Рисунок1

  1. Сетевой предохранитель. Располагается, как правило, на плате сетевого фильтра, схематично – на входе питания печи. Через этот предохранитель, питаются все цепи устройства. Защитные действия любого предохранителя, имеют двунаправленный характер. Так и с сетевым предохранителем, с одной стороны он защищает саму печь от перепадов напряжения сети, а с другой, защищает питающую сеть, от коротких замыканий, могущих возникнуть в момент проявления различного рода неисправностей в конструкции печи. Имея довольно большой номинал – 8 – 12А, сетевой предохранитель слабо защищает электронику печи от перепадов напряжения но, не плохо справляется с защитой сети от неисправностей микроволновки.
  2. Высоковольтный предохранитель – является элементом защиты высоковольтной цепи питания магнетрона. Защищает он, прежде всего, высоковольтный трансформатор от перегрузок, возникающих в случае выхода из строя элементов умножителя или самого магнетрона. Конструктивно, высоковольтный предохранитель располагается рядом с трансформатором, а схематично, включен в разрыв цепи, между выходом высоковольтной обмотки и входом умножителя. К высоковольтным цепям предъявляются особые требования в плане безопасности. По этому, проводники этой цепи имеют усиленную – двойную изоляцию, а предохранитель упрятан в специальный пластиковый кожух. Кожухи могут иметь различную конструкцию и форму. Но, почти всегда состоят из двух половинок, соединенных между собой пластиковой перемычкой с одной стороны, и защелками с другой. Если рассоединить защелки, то кожух раскрывается, как коробочка, обеспечивая доступ к самому предохранителю (рисунки 2,3,4).

    Рисунок 2

    Рисунок 3

    Рисунок 4

    Существуют модели печей, в которых высоковольтный предохранитель отсутствует как таковой – не предусмотрен заводом – изготовителем. В таких случаях функцию защиты высоковольтной цепи выполняет сетевой предохранитель.

    Для того, чтобы, при выходе из строя элементов цепи питания магнетрона, сработал сетевой предохранитель, нагрузка на трансформатор должна возрасти более, чем вдвое и на довольно продолжительный промежуток времени, что однозначно плохо сказывается на его здоровье и может привести к выходу трансформатора из строя.

  3. Наличие третьего плавкого предохранителя характерно только для печей с электронной панелью управления. Каждая электронная панель питается от своего – отдельного источника питания. Основой такого источника – является силовой трансформатор малой мощности, преобразующий напряжение сети, в напряжения пригодные для питания схем панели. Первичная обмотка этого трансформатора запитывается от сети, через отдельный предохранитель, который конструктивно, чаще всего – является элементом конструкции самого трансформатора. Другими словами, расположен этот предохранитель поверх первичной обмотки и сверху закрыт изоляцией. Такое расположение, значительно затрудняет замену предохранителя в случае выхода его из строя. Но, часто бывает и по другому, например в печах фирмы Samsung, данный предохранитель расположен отдельно, на плате панели управления и заменить его, при необходимости, не составит труда. Этот предохранитель имеет очень маленький номинал и очень чувствителен к не стабильности напряжения в сети.

При срабатывании высоковольтного предохранителя, печь будет «делать вид, что работает», будет функционировать все, кроме магнетрона, то есть все будет шуметь, гореть и крутиться но, греть она при этом не будет. А, вот при срабатывании сетевого предохранителя, или предохранителя панели управления, эффект получится приблизительно одинаковый – печь будет молчать совсем.

Рисунок 5

Жизнь учит не экономить на безопасности, поэтому при перегорании любого из предохранителей, всегда лучше посмотреть на колпачке его номинал и заменить таким же.

Но, если Вы все же решили поставить «жука», то, я вас умоляю, не в коем случае не применяйте для этого гвозди и другие токопроводящие предметы, подходящие по размеру, и не делайте так, как показано на рисунке 5 слева – это ни к чему хорошему не приведет.

Не поленитесь, для расчетов воспользуйтесь таблицей, и сделайте так, как показано на рисунке 5 справа, поверьте, так будет лучше.

Ток разрушения

нити, А

Диаметр провода, мм
Медь Железо Олово Свинец
0,5 0,03 0,06 0,11 0,13
1,0 0,05 0,12 0,18 0,21
2,0 0,09 0,19 0,29 0,33
3,0 0,11 0,25 0,38 0,43
4,0 0,14 0,3 0,48 0,52
5,0 0,16 0,35 0,53 0,6
6,0 0,18 0,4 0,6 0,68
7,0 0,2 0,45 0,66 0,75
8,0 0,22 0,48 0,73 0,82
9,0 0,24 0,52 0,78 0,89
10 0,25 0,55 0,85 0,95
15 0,32 0,72 1,12 1,25
20 0,41 0,87 1,35 1,52
25 0,46 1,0 1,56 1,75
30 0,52 1,15 1,77 1,98

В таблице, согласно приблизительным расчетам, приведены физические параметры нитей самодельных предохранителей изготавливаемых из различных материалов. Это – не является примером того, как надо делать но, предохранитель, восстановленный при помощи данных этой таблицы, все же лучше и безопаснее, чем гвоздь.

Электричество – хорошая штука но, любая палка о двух концах, помните об этом. При ремонте электрических устройств, будьте внимательны, соблюдайте меры безопасности и не пренебрегайте элементами защиты. Удачи в ремонте!

This entry was posted in Ремонт. Bookmark the <a href="https://kabel-house.ru/remont/setevoj-filtr/" title="Permalink to Сетевой фильтр" rel="bookmark">permalink</a>.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *