Электричество от тепла

Исследовательская часть

Собственно, почему элемент Пельтье? Гораздо логичнее приобрести фонарик с мышечным приводом («жужелицу»), солнечными батареями, или, на худой конец, построить ветряк. Раньше я тоже думал, что вполне можно обойтись «жужелицей». Но в ней очень много движущихся деталей, которые сделаны дядюшкой Ляо из дешевого пластика. Первая поломка в условиях Большого Песца – и ты остаешься без электричества.
Хорошо, спросите вы, почему не солнечные батареи? Там нет движущихся частей. Согласен, отвечу я, но в условиях ядерной или вулканической зимы или под двухметровым бетонным перекрытием убежища солнышко не так-то легко поймать.
Ветряк? А какой площади должны быть его лопасти для того, чтобы он мог крутиться даже от слабого ветра? Движущиеся детали, опять же. Ветряк годится для стационарной установки при оборудовании долговременного укрытия.
Обмозговав эти доводы, я приуныл. Но вскоре случайно наткнулся на сайт nepropadu.ru (никакой рекламы, исключительно ссылка на исходный материал). Я просидел на нем безвылазно двое суток, и в процессе наткнулся на прелюбопытную статью про печку-щепочницу из корпуса от компьютерного БП с элементом Пельтье на боку (ссылка в конце поста). В комментариях было много скептики, но автор писал, что спокойно заряжал телефон от подключенного китайского DC-DC преобразователя… Я загорелся.

Конструкторская часть

Для начала я заказал у китайцев на e-Bay такой же элемент Пельтье (на эксперименты хватит). Обошелся он мне в 320 рублей. Что порадовало, так это ускоренная, с отслеживанием, но бесплатная доставка. Плюс товар отправили буквально через час после оплаты (а дело было в воскресенье).
Пока элемент Пельтье ехал, я продумал конструкцию будущего термоэлектрического генератора, нашел подходящий радиатор с вентилятором (прекрасно подошел древний процессорный радиатор), а также откопал на просторах Интернета схему DC-DC преобразователя с максимальным выходным током 1 ампер при напряжении 5 вольт.
Делать печку-щепочницу по примеру из той статьи я посчитал не целесообразным. Металл, из которого делают компьютерное железо, очень мягкий, от воздействия высоких температур его «поведет», да и прогорит он быстро. Поэтому было решено сделать «съемный вариант» генератора, который можно было бы закрепить на боку стационарной печки или прислонить к стоящему на костре котелку. А чтобы в таких условиях не поджарить элемент Пельтье на открытом огне, нужна была термостойкая, но теплопроводящая прокладка. Для этого мне удалось раздобыть кусок толстой алюминиевой пластины размерами 100х120х5 миллиметров.

Чтобы прижать элемент Пельтье к алюминиевой подложке, а к нему, в свою очередь, прижать радиатор, я решил использовать детский металлический конструктор, который я когда-то покупал для нужд робототехники.
Но вот элемент Пельтье приехал, и настало время для сборки.

Технологическая часть

У нас был радиатор, алюминиевая пластина, элемент Пельтье, горстка радиодеталей, кусок фольгированного текстолита и самые разные винтики и гайки. Дальше не помню.
Итак, все компоненты собраны, можно приступать к сборке.
Прошу прощения за размеченную и просверленную в двух местах пластину – до меня только после дошло, что неплохо бы фотографировать весь процесс сборки с самого начала.
Первая неприятность, которая меня подстерегала – это 12-вольтовый штатный вентилятор на радиаторе. Так как я собираюсь добывать всего 5 вольт, да еще и при довольно небольшом максимальном токе, то это могло создать проблему.
Сначала я закинул удочки во все радио- и компьютерные магазины Перми, однако нигде не нашлось вентилятора 80х80 миллиметров на 5 вольт. А если и были, то меньших размеров и на ток более 200 мА, что было слишком много.
Затем я покопался на Ибее и обнаружил, что нужный мне вентилятор стоит от 300 рублей. Но надеяться на скорую доставку было бессмысленно, и поэтому я оставил этот вариант как резервный.
И только после всех поисков я догадался включить штатный 12-вольтовый вентилятор к 5-вольтовому источнику напряжения. Оказалось, что он вполне неплохо дует, и при этом потребляет не очень большой ток. Поэтому я решил пока оставить его, а после проведения испытаний при необходимости заказать вентилятор на Ибее.
Я разметил алюминиевую пластину и просверлил в ней два отверстия для крепления радиатора и два – для платы преобразователя напряжения. Отверстия я сделал диаметром 4 миллиметра (под винты из конструктора), а с внешней стороны расширил их до 7,5 миллиметров, чтобы скрыть шляпки винтов. После этого я скруглил напильником острые углы и прошелся крупной наждачкой по всем поверхностям пластины, и мелкой – по месту прижатия элемента Пельтье.
На этом обработку подложки я посчитал завершенной и приступил к изготовлению преобразователя напряжения.
Импульсный повышающий преобразователь напряжения собран на ИМС L6920, которая начинает работать при входном напряжении 0,8 вольт и позволяет снять со своего выхода фиксированное напряжение 3,3 или 5 вольт, или изменяемое от 1,8 до 5,5 вольт.
Принципиальная схема преобразователя является типовой и взята из даташита.
Для получения 5 вольт на выходе схемы ножка 1 соединена с общим проводом. Также настроена выдача низкого уровня на ножке 3 при падении входного напряжения ниже 1,5 вольт.
Для схемы была разведена печатная плата, на которой предусмотрено крепление к основанию-подложке с помощью все тех же деталей от детского конструктора. За перегрев платы я не беспокоюсь, так как она имеет принудительное охлаждение потоком воздуха, выдуваемым из радиатора.
Пришлось повозиться с макросом корпуса, в котором была купленная мной микросхема. На сайте магазина значилось, что она в корпусе SSOP-8. Как оказалось, в стандартном наборе макросов Sprint Layout нет такого корпуса. Я нашел чертеж корпуса SSOP-8 и сделал макрос, после чего развел плату. После пробной печати выяснилось, что микросхема несколько шире, и на свои контактные площадки не помещается. Гугление конкретной модели микросхемы (L6920D) привело меня на сайт Чип-Дипа, где я узнал, что ИМС с индексом D изготавливается в корпусе TSSOP-8. Почесав затылок, я нашел чертеж этого корпуса, создал макрос и переразвел плату. Теперь все оказалось правильно.

Плата изготовлена при помощи ЛУТа и собрана. Оказалось, что корпус TSSOP-8 паять без фена очень неудобно. Но мы люди тертые, FTDI-микросхемы с шагом ножек 0,4 миллиметра паяли.
Теперь можно заняться установкой элемента Пельтье и радиатора. Подложку и радиатор в местах контакта с элементом я намазал термопастой. Затем стянул получившийся «бутерброд» гайками.
Оказалось, что плата преобразователя не влезает, упирается входным разъемом в радиатор, слегка не рассчитал. Перевернул крепежные скобы, плату вывесил наружу, а для защиты элементов от механических повреждений добавил еще две скобы. Вот что в итоге получилось:
Теперь можно проверить работоспособность генератора. Я нагревал его на газовой горелке. Вентилятор решил пока не ставить.
Для начала оказалось, что я перепутал полярность подключения элемента к преобразователю. Хотя вроде бы все было правильно – черный провод – к минусу, красный – к плюсу. Однако работать генератор не хотел. Тогда я изменил полярность подключения элемента.
Генератор заработал – сначала загорелись оба светодиода, сигнализируя о наличии 5 вольт на выходе и низком напряжении на входе, затем красный светодиод погас – напряжение поднялось выше полутора вольт.
К моему неудовольствию оказалось, что без вентилятора через пару минут работы системы радиатор ощутимо нагрелся. Так дело не пойдет.
На следующий день я прогулялся по металлорынку и нескольким компьютерным барахолкам, но на мой вопрос о 5-вольтовых вентиляторах везде разводили руками и советовали сходить «еще вон в то место», в котором я уже был пару минут назад. В итоге я поехал домой не солоно хлебавши.
Дома я провел эксперимент по запитке штатного 12-вольтового вентилятора от выходных 5 вольт преобразователя. Результаты меня не порадовали – преобразователь с явной неохотой погасил красный светодиод, а вентилятор несколько секунд слабо подергивался, пытаясь запуститься. Воздушного потока от работающего в полсилы вентилятора оказалось недостаточно для нормального охлаждения – радиатор так же быстро нагрелся, хоть и не обжигал теперь пальцы. В итоге вентилятор я решил все же заказать с Ибея.

Результат

Несмотря на низкий КПД элемента Пельтье в режиме генерации, промежуточный результат я все же получил – при подключении к выходу преобразователя портативного аккумулятора с заявленным током заряда 1000 мА генератор смог дать ток около 600 мА. Думаю, для зарядки большинства гаджетов в условиях Большого Песца этого тока вполне хватит.
По приезду вентилятора (Ибей обещает середину марта-начало апреля) проверю охлаждение. Плюс нужно будет протестировать работу генератора в «боевых» условиях – на костре.
За качество фотографий извиняюсь — фотограф из меня никакой. Ссылка на вдохновившую меня статью: тыц.
Успехов!

Лучшее время для работы термогенератора на основе элементов пельтье, это конечно же зима. Потому что их нужно хорошо охлаждать, чтобы хоть что-то получить.

В эксперименте с испытанием мощного генератора использованы 12 модулей Пельтье TEC1-12706. Самые дешевые и популярные, продаются в этом китайском магазине. Для него есть кулер охлаждения.

Охлаждение в показанном примере осуществлялось вентилятором мощностью 5,4 ватта, 12 вольт.

О том, что это такое элемент Пельтье, какие у него характеристики и как работает, конструкции рабочих моделей, описано в нескольких статьях на нашем сайте, которые вы легко сможете найти через строку удобного поиска.

Цель эксперимента узнать, какую максимальную мощность может выдать обычный китайский самый дешевый термоэлемент в зимнее время года.
Итак, с началом эксперимента печь растоплена, когда дрова немного разгорелись, термогенератор начал работать и запустился вентилятор. Он охлаждает холодную сторону термоэлементов. Схема простейшая. В конце видео показано, как собирается такой термогенератор.

В ходе эксперимента будет достигнуто максимальное напряжение холостого хода этого генератора. Потом при помощи потенциометра это напряжение будет понижено ровно вполовину. Тем самым уровняется сопротивление генератора и сопротивление нагрузки. Тогда в генераторе и в нагрузке рассеивается одна и та же величина мощности. Это даст 50 процентную мощность, точнее кпд 50% отдаваемой мощности. Это соответствует эффективности всего лишь 50%. Но зато выход такой мощности будет максимальным в таком соотношении. Но передача максимальной мощности имеет место только при таком соотношении!
По мере разогрева печи растет напряжение, выдаваемое электрогенератором. Вентилятор набрал обороты, это довольно мощный вентилятор мощностью 5,5 ватт. Поэтому часть мощности он будет отбирать на себя. Та мощность, которую сейчас будет определена, это будет полезная мощность. Больше 26 вольт напряжение не поднимается. Подключаем потенциометр и начинаем добавлять сопротивление.


Теперь плавно доводим напряжение до 13 вольт. Зафиксирована мощность 9 ватт. Пока шли настройки, генератор прогрелся и мощность упала на 1,5 ватт.
Кратковременно удалось получить до 9 ватт. Но потом мощность упала и остановилась в пределах 7,5 ватт. Но этот показатель держался стабильно. Этой мощности хватит для зарядки любого телефона, смартфона или планшета.

Из 12 элементов пельтье получается 0,5 ватт и более на один элемент. При температуре воздуха ноль градусов это неплохой показатель на воздушном охлаждении. При температуре -20 результат был бы на порядок выше. Поэтому вполне возможно получить даже до одного ватта на один элемент пельтье, но при большом морозе.
Теперь вентилятор будет подключен через ваттметр для того, чтобы посмотреть, сколько полезной энергии расходуется на его работу. Прибор показал 6 ватт. Если бы не этот вентилятор, можно было бы добавить еще 5-6 ватт к мощности этого термогенератора.
В продолжение эксперимента вентилятор планировалось отключить, чтобы охлаждение делать с помощью снега. После того, как вентилятор сброшен, радиатор будет обильно покрыт снегом. Однако, в эксперименте произошла неожиданная авария. После того, как был снят вентилятор, печка перегрелась и вышел из строя какой-то из элементов пельтье, расплавившись без охлаждения. В системе произошло разъединение контактов. Поэтому вентилятор является в данном устройстве полезным элементом. Для безопасности же необходимо использовать защитные решетки.

Вывод следующий: порядка 1 ватта на элемент пельтье можно получить при хорошем морозе. Есть места, например якутия или дальний север, температура доходит до минус 50 градусов цельсия. Так что там 1 ватт с элемента получить будет просто. Представьте, в юрте печка, а за ней стена размером 1 x 2 м. Теплый стороной внутрь печки, а холодный наружу, где мороз и ветер. С одного квадратного метра таких элементов можно снять до 0,5 киловатта электричества. То есть, с 2 квадратных метров можно получить до одного киловатта электроэнергии.

Такие мощные печи на основе элементов Пельтье производятся в России. Называются они “Электрогенерирующая печь Индигирка”. Купить их можно в этом магазине, скидочный промокод 11920924.

Конструкция такого термогенератора предельно проста. 12 самых дешевых китайских элементах пельтье зажимаются между двумя алюминиевыми радиаторами, которые должны иметь ровные, в идеале полированные, поверхности. Естественно, на каждую сторону термоэлемента наносится термопаста. Скручиваем радиаторы болтами и соединяем проводами. Крепим кулер, желательно мощнее. Ну и сама печка. Это кусок оцинковки, лучше нержавейки. Крепится к горячему радиатору болтами. Потом делается дно с отверстиями 7-8 миллиметров для забора воздуха.

Есть продолжение этого эксперимента. Чтобы найти его, напишите в поиске по сайту: Пельтье на воздушном охлаждении.

This entry was posted in Ремонт. Bookmark the <a href="https://kabel-house.ru/remont/elektrichestvo-ot-tepla/" title="Permalink to Электричество от тепла" rel="bookmark">permalink</a>.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *