АКБ

Характеристики

Возможно, этот раздел содержит оригинальное исследование. Добавьте , в противном случае он может быть удалён.
Дополнительные сведения могут быть на странице обсуждения.
Этот раздел не завершён. Вы поможете проекту, исправив и дополнив его.

Характеристики литий-ионных аккумуляторов зависят от химического состава составляющих компонентов и варьируются в следующих пределах:

  • напряжение единичного элемента:
    • максимальное: 4,2 В;
    • минимальное: 2,5 В;
  • удельная энергоёмкость: 110 … 243 Втч/кг;
  • внутреннее сопротивление: 5 … 15 мОм/Ач;
  • число циклов заряд/разряд до снижения ёмкости до 80 %: 600;
  • время быстрого заряда: 1 час;
  • саморазряд зависит от температуры хранения и степени заряда. При температуре 25 °C и заряде 100 % ≈1,6 % в месяц;
  • ток нагрузки относительно ёмкости С представленной в Ач:
    • постоянный: до 5С;
    • импульсный: до 50С;
    • оптимальный: до 1С;
  • диапазон рабочих температур: от −20 °C до +60 °C (наиболее оптимальная +20 °C);

Часто в корпус аккумулятора встраивают контроллер защиты, который отключает аккумулятор, предотвращая превышение напряжения заряда, чрезмерный разряд и превышение температуры, приводящие его к преждевременной деградации или разрушению. Также этот контроллер может опционально ограничивать ток потребления. Тем не менее, надо учитывать, что не все аккумуляторы снабжаются защитой. В целях снижения стоимости производители могут не устанавливать её.

Литиевые аккумуляторы имеют специальные требования при подключении нескольких ячеек последовательно. Зарядные устройства для таких многосоставных аккумуляторов с ячейками снабжаются схемой балансировки ячеек. Смысл балансировки в том, что электрические свойства ячеек могут немного отличаться, и какая-то ячейка достигнет полного заряда раньше других. При этом необходимо прекратить заряд этой ячейки, продолжая заряжать остальные. Эту функцию выполняет специальный узел — балансир. Он шунтирует заряженную ячейку так, чтобы ток заряда шёл мимо неё.

Зарядные устройства могут поддерживать конечное напряжение заряда в диапазоне 4,15-4,25В.

Устройство

Литий-ионный аккумулятор. Схема работыКонтроллер заряда (плата защиты) цилиндрического литий-ионного аккумулятора, конструкционно припаянный к отрицательному контакту аккумулятора и обратной фольгированной стороной выполняющий его функции. На снимке частично демонтирован и отсоединён от проводника, идущего к положительному контакту аккумулятора

Литий-ионный аккумулятор состоит из электродов (катодного материала на алюминиевой фольге и анодного материала на медной фольге), разделённых пористым сепаратором, пропитанным электролитом. Пакет электродов помещён в герметичный корпус, катоды и аноды подсоединены к клеммам-токосъёмникам. Корпус иногда оснащают предохранительным клапаном, сбрасывающим внутреннее давление при аварийных ситуациях или нарушениях условий эксплуатации. Литий-ионные аккумуляторы различаются по типу используемого катодного материала. Переносчиком заряда в литий-ионном аккумуляторе является положительно заряженный ион лития, который имеет способность внедряться (интеркалироваться) в кристаллическую решётку других материалов (например, в графит, окислы и соли металлов) с образованием химической связи, например: в графит с образованием LiC6, окислы (LiMnO2) и соли (LiMnRON) металлов.

Первоначально в качестве отрицательных пластин применялся металлический литий, затем — каменноугольный кокс. В дальнейшем стал применяться графит. Применение оксидов кобальта позволяет аккумуляторам работать при значительно более низких температурах, повышает количество циклов разряда/заряда одного аккумулятора. Распространение литий-железо-фосфатных аккумуляторов обусловлено их относительно низкой стоимостью. Литий-ионные аккумуляторы применяются в комплекте с системой контроля и управления — СКУ или BMS (battery management system), — и специальным устройством заряда/разряда.

В настоящее время в массовом производстве литий-ионных аккумуляторов используются три класса катодных материалов:

  • кобальтат лития LiCoO2 и твёрдые растворы на основе изоструктурного ему никелата лития
  • литий-марганцевая шпинель LiMn2O4
  • литий-феррофосфат LiFePO4.

Электрохимические схемы литий-ионных аккумуляторов:

  • литий-кобальтовые LiCoO2 + 6C → Li1-xCoO2 + LiC6
  • литий-ферро-фосфатные LiFePO4 + 6C → Li1-xFePO4 + LiC6

Благодаря низкому саморазряду и большому количеству циклов заряда/разряда, Li-ion-аккумуляторы наиболее предпочтительны для применения в альтернативной энергетике. При этом, помимо системы СКУ они укомплектовываются инверторами (преобразователи напряжения).

> Преимущества

  • Высокая энергетическая плотность (ёмкость).
  • Низкий саморазряд.
  • Не требуют обслуживания.

Недостатки

Широко применяемые литий-ионные аккумуляторы при перезаряде, несоблюдении условий заряда или при механическом повреждении часто бывают чрезвычайно огнеопасными.

Также нельзя использовать аккумуляторы, обладающие слабой силой тока (с маркировкой ICR), в устройствах, которые требуют большой силы тока (таких как электронные парогенераторы), в этом случае либо сработает защита на самом устройстве, либо аккумулятор нагреется, и загорится или взорвется .

Взрывоопасность

Статья или раздел содержит противоречия и не может быть понята однозначно. Следует разрешить эти противоречия, используя более точные авторитетные источники или корректнее их цитируя. На странице обсуждения должны быть подробности.

Вздувшийся литий-ионный аккумулятор в плоском алюминиевом корпусе типоразмера ENEL10 (Li-42B, NP-45). Бумажная этикетка снята Литий-ионная аккумуляторная батарея электромобиля

Аккумуляторы Li-ion первого поколения были подвержены взрывному эффекту. Это объяснялось тем, что в них использовался анод из металлического лития, на котором в процессе многократных циклов зарядки/разрядки возникали пространственные образования (дендриты), приводящие к замыканию электродов и, как следствие, возгоранию или взрыву. Этот недостаток удалось окончательно устранить заменой материала анода на графит. Подобные процессы происходили и на катодах литий-ионных аккумуляторов на основе оксида кобальта при нарушении условий эксплуатации (перезарядке). Литий-ферро-фосфатные аккумуляторы полностью лишены этих недостатков. Кроме того, все современные зарядные устройства для литий-ионных аккумуляторов предотвращают перезаряд и перегрев вследствие слишком интенсивного заряда.

Литиевые аккумуляторы изредка проявляют склонность к взрывному самовозгоранию. Интенсивность горения даже от миниатюрных аккумуляторов такова что может приводить к тяжким последствиям. Авиакомпании и международные организации принимают меры к ограничению перевозок литиевых аккумуляторов и устройств с ними на авиатранспорте.

Самовозгорание литиевого аккумулятора очень плохо поддается тушению традиционными средствами. В процессе термического разгона неисправного или поврежденного аккумулятора происходит не только выделение запасенной электрической энергии, но и ряд химических реакций, выделяющих вещества для поддержания горения, горючие газы от электролита, а также в случае не LiFePO4 электродов, выделяется кислород. Потому вспыхнувший аккумулятор способен гореть без доступа воздуха и для его тушения непригодны средства изоляции от атмосферного кислорода. Более того, металлический литий активно реагирует с водой с образованием горючего газа водорода, потому тушение литиевых аккумуляторов водой эффективно только для тех видов аккумуляторов, где масса литиевого электрода невелика. В целом тушение загоревшегося литиевого аккумулятора неэффективно. Целью тушения может быть лишь снижение температуры аккумулятора и предотвращение распространения пламени.

Эффект памяти

Традиционно считается, что, в отличие от Ni-Cd и Ni-MH аккумуляторов, Li-Ion аккумуляторы полностью избавлены от эффекта памяти. По результатам исследований учёных Института Пауля Шерера (Швейцария) в 2013 году этот эффект был таки обнаружен, но оказался ничтожен.

Причиной его является то, что основой работы батареи являются процессы высвобождения и обратного захвата ионов лития, динамика которых ухудшается в случае неполной зарядки. Во время зарядки ионы лития один за другим покидают частицы литий-феррофосфата, размер которых составляет десятки микрометров. Катодный материал начинает разделяться на частицы с разным содержанием лития. Заряжание батареи происходит на фоне возрастания электрохимического потенциала. В определённый момент он достигает предельного значения. Это приводит к ускорению высвобождения оставшихся ионов лития из катодного материала, но они уже не меняют суммарного напряжения батареи. Если батарея не будет полностью заряжена, то на катоде останется некоторое число частиц, близких к пограничному состоянию. Они практически достигли барьера высвобождения ионов лития, но не успели его преодолеть. При разряде свободные ионы лития стремятся вернуться на место и рекомбинировать с ионами феррофосфата. Однако на поверхности катода их также встречают частицы в пограничном состоянии, уже содержащие литий. Обратный захват затрудняется, и нарушается микроструктура электрода.

В настоящее время просматриваются два пути решения проблемы: внесение изменений в алгоритмы работы системы управления батареями и разработка катодов с увеличенной площадью поверхности.

Требования к режимам заряда/разряда

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 19 июля 2018 года.

Достоверность этого раздела статьи поставлена под сомнение. Необходимо проверить точность фактов, изложенных в этом разделе.
На странице обсуждения могут быть пояснения.

Глубокий разряд полностью выводит из строя литий-ионный аккумулятор. Также на жизненный цикл аккумуляторов влияет глубина его разряда перед очередной зарядкой и зарядка токами выше установленных производителем. Крайне чувствительны они и к напряжению зарядки. Если его повысить всего на 4 %, то аккумуляторы будут вдвое быстрее терять ёмкость от цикла к циклу. Ток зарядки зависит от разницы напряжений между аккумулятором и зарядным устройством и от сопротивления как самого аккумулятора, так и подводимых к нему проводов. Поэтому увеличение напряжения зарядки на 4 % может приводить к увеличению тока зарядки в 10 раз. Это отрицательно сказывается на аккумуляторе. Он может перегреваться и деградировать.

Старение

Литиевые аккумуляторы стареют, даже если не используются. Соответственно, нет смысла покупать аккумулятор «про запас» или чрезмерно увлекаться «экономией» его ресурса.

Оптимальные условия хранения Li-ion-аккумуляторов достигаются при 40-процентном заряде от ёмкости аккумулятора и температуре 0…10 °C:

Температура, ⁰C С 40%-м зарядом, % за год Со 100%-м зарядом, % за год
0 2 6
25 4 20
40 15 35
60 25 40 % за три месяца

Снижение ёмкости при низких температурах

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 19 июля 2018 года.

Проверить информацию. Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.
На странице обсуждения должны быть пояснения.

Как и в других типах аккумуляторов, разрядка в условиях низких температур приводит к снижению отдаваемой энергии, в особенности при температурах ниже 0 ⁰C. Так, снижение запаса отдаваемой энергии при понижении температуры от +20 ⁰C до +4 ⁰C приводит к уменьшению отдаваемой энергии на ~5-7 %, дальнейшее понижение температуры разрядки ниже 0 ⁰C приводит к потере отдаваемой энергии на десятки процентов и может приводить к преждевременному исчерпанию ресурса. Химия литий-ионных аккумуляторов более чувствительна к температурам заряжания, и оно оптимально при температурах ~ +20 ⁰C, а при температурах ниже +5 ⁰C не рекомендовано.

Как и для других типов аккумуляторов, одним из вариантов решения проблемы являются аккумуляторы с внутренним подогревом.

Примечания

  1. А.М. Скундин, О.А. Брылев. Наноматериалы в современных химических источниках тока. МГУ (2011г).
  2. Возгорания на Dreamliner связаны с аккумуляторами
  3. Samsung отзывает Galaxy Note 7 из-за возможности возгорания
  4. Находившийся за рулем Tesla бывший агент ФБР погиб в ДТП
  5. Should You Be Worried About Your E-Cigarette Exploding?
  6. Лайнер экстренно сел из-за загоревшегося планшета Samsung
  7. Lithium Batteries as Cargo in 2016 Update III
  8. Bandhauer Todd M., Garimella Srinivas, Fuller Thomas F. A Critical Review of Thermal Issues in Lithium-Ion Batteries (англ.) // Journal of The Electrochemical Society. — 2011. — Vol. 158, no. 3. — P. R1. — ISSN 0013-4651. — DOI:10.1149/1.3515880.
  9. Zaghib K., Dubé J., Dallaire A., Galoustov K., Guerfi A., Ramanathan M., Benmayza A., Prakash J., Mauger A., Julien C.M. Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries (англ.) // Journal of Power Sources. — 2012. — December (vol. 219). — P. 36—44. — ISSN 0378-7753. — DOI:10.1016/j.jpowsour.2012.05.018.
  10. http://www.powerinfo.ru/accumulator-liion.php
  11. Гореть, а не тлеть! Что на самом деле случилось с электроседаном Tesla Motors?
  12. Аспекты безопасности литий-ионных аккумуляторов
  13. Paul Scherrer Institut (PSI) :: Memory effect now also found in lithium-ion batteries. Дата обращения 2 мая 2013. Архивировано 11 мая 2013 года.
  14. Экономия батареи на Андроид: советы и мифы | AndroidLime. androidlime.ru. Дата обращения 29 февраля 2016.
  15. 5 практических советов по эксплуатации литий-ионных аккумуляторов (рус.)
  16. Эксплуатация и хранение литий-ионных аккумуляторов (рус.)
  17. Независимая интернет-газета «Новый взгляд». 22.01.2016.Созданы литий-ионные аккумуляторы с подогревом

Ссылки

  • ГОСТ 15596-82 «Источники тока химические. Термины и определения»
  • ГОСТ Р МЭК 61960-2007 «Аккумуляторы и аккумуляторные батареи, содержащие щелочной и другие некислотные электролиты. Аккумуляторы и аккумуляторные батареи литиевые для портативного применения»
  • (недоступная ссылка с 19-12-2016 )Внутренности Li-Pol на примере Palm m505 (недоступная ссылка) (рус.)
  • Литий-ионные и литий-полимерные аккумуляторы. iXBT (2001 г.)
  • Memory effect in a lithium-ion battery (Эффект памяти в литиевых аккумуляторах.) / Nature Materials 12, 569—575 (2013) doi:10.1038/nmat3623 (англ.)

В этой статье или разделе имеется список источников или внешних ссылок, но источники отдельных утверждений остаются неясными из-за отсутствия сносок. Утверждения, не подкреплённые источниками, могут быть поставлены под сомнение и удалены. Вы можете улучшить статью, внеся более точные указания на источники.

Сегодня редко встретишь устройство, работающее от механической энергии, – подавляющее большинство гаджетов питается электричеством. Аккумуляторы стали неотъемлемой частью электронных девайсов. Как устроена батарейка? Попробуем разобраться.

Существует много разновидностей аккумуляторов, но в бытовой электронике чаще всего применяются никель-кадмиевые (NiCd), никель-металл-гидридные (NiMh) и литий-ионные (Li-Ion) батареи.

Дольше всего используются NiCd-аккумуляторы благодаря своей простоте в изготовлении, эксплуатации и хранении. До сих пор NiCd-аккумуляторы остаются наиболее популярными для питания радиостанций, медицинского оборудования, профессиональных видеокамер и мощных инструментов.

NiMH-аккумулятор, по сравнению с NiCd, выделяет значительно большее количество тепла во время заряда. Ему также требуется более сложный алгоритм определения момента полного заряда. Поэтому большинство NiMH-аккумуляторов оборудовано внутренним температурным датчиком. Кроме того, NiMH-аккумулятор не может заряжаться быстро – время заряда обычно вдвое больше, чем у NiCd. Но зато их емкость больше, чем у NiCd.

Характеристики Li-Ion-аккумуляторов вдвое превышают показатели NiCd- аккумуляторов в пересчете на один килограмм веса. Именно поэтому Li-Ion-батареи используются во всех ноутбуках и телефонах, где важен вес и время автономной работы.

Как работает аккумулятор?

Аккумуляторы и батарейки работают благодаря разности напряжения между двумя металлическими пластинами, погруженными в раствор электролита. Впервые источник тока, работающий по такому принципу, был создан в XIX веке. Одна пластина в нем была медной, вторая – цинковой, которая очень быстро растворялась.

Разность напряжений можно объяснить на примере аналогии с двумя емкостями с жидкостью, которые соединены трубкой. Чтобы вода в трубке начала двигаться, нужно создать разность уровней, например, поднять одну емкость выше другой. Постепенно вода перетечет из левой бутылки в правую. Когда уровни сравняются, ток воды прекращается. Для аккумулятора это значит полный разряд.

Чтобы его перезарядить, надо вернуть воду в первоначальную емкость. Например, с помощью черпачка или чашки. Если вычерпывать воду из правой бутылки и выливать ее в левую, аккумулятор будет заряжаться. Конечно, вычерпывать нужно с такой же скоростью, с какой вода вытекает по шлангу. Иначе опять аккумулятор разрядится.

Конструктивно же сам аккумулятор – предельно простое устройство. Это два длинных листка из графита и из оксида лития с кобальтом. Они смазываются электролитом и сворачиваются в рулон. Литий-ионный аккумулятор готов.

Мифы об аккумуляторах

Распространено мнение, что сразу после покупки Li-Ion-аккумулятор нужно «раскачать» – провести несколько циклов полного заряда-разряда. Обычно – от трех до пяти. Этот миф не очень вредный для аккумуляторов, но, тем не менее, тратит его циклы работы.

Свойство Li-Ion-аккумуляторов заключается в том, что они не имеют эффекта памяти, как это было с NiCd-батареями. Этот эффект заключался в том, что если зарядить не до конца разряженный NiCd-аккумулятор, его емкость падала. Li-Ion такой особенности не имеет. Более того, производитель гарантирует, что емкость аккумулятора не снизится за 300 циклов разряда-заряда.

Еще раз: плеер, телефон, рацию, кпк, планшет, часы или любой другой мобильный девайс с Li-Ion «тренировать» бесполезно.

Аккумуляторы Li-Ion вообще не любят слишком большого заряда и разряда. Производитель гарантирует 300 циклов, но это не значит, что на 301 цикл батарею можно выбрасывать. Все будет зависеть от условий эксплуатации. «Тепличными» условиями для Li-Ion является максимальный заряд до 80%, а минимальный разряд – до 40%. Некоторые модели ноутбуков позволяют выставить эти параметры в сервисном ПО, продлевая «жизнь» батарее. Также аккумуляторы безвозвратно теряют емкость при температуре ниже нуля градусов и при нагреве выше +40 градусов. Поэтому гаджеты лучше беречь от мороза и высокого нагрева.

Как узнать реальную емкость аккумулятора Android телефона

05.05.2019&nbsp для начинающих | мобильные устройства

Со временем, особенно при интенсивном использовании или частом полном разряде, батарея на Android телефоне теряет свою емкость, а при замене аккумулятора на новый очень часто можно получить меньшую емкость, чем была на заводской батарее, даже если на наклейке указаны те же числа. Во всех этих и многих других случаях может быть полезно узнать реальную емкость аккумулятора Android, о чём и пойдет речь в этой инструкции. Также может быть полезным: Почему быстро разряжается батарея на Android и что делать?, Как включить процент заряда батареи на Android.

К сожалению, встроенных функций оценки актуальной емкости батареи на Android нет: некоторые производители имеют встроенные приложения или разделы в настройках для оценки «здоровья» аккумулятора, но по ним не всегда можно сделать верные выводы. Какая-то системная информация о фактической емкости, которую можно было бы использовать, в Android также отсутствует. Однако, данные об энергопотреблении в каждый момент времени (такие сведения системе предоставляет) и сведения об оставшемся заряде позволяют сторонним приложениям проанализировать и подсчитать близкую к действительной емкость установленного аккумулятора.

Получение данных об актуальной емкости батареи Android в приложении AccuBattery

В Play Маркет доступно несколько приложений для анализа емкости батареи, однако самое популярное и точное (в сети можно найти сравнения результатов, полученных в программе и с помощью аппаратных измерителей емкости) — AccuBattery, доступное бесплатно (есть и Pro версия, но для нашей задачи она не обязательна).

Скачать AccuBattery можно из официального магазина Play Маркет: https://play.google.com/store/apps/details?id=com.digibites.accubattery. После установки и запуска AccuBattery, информации о емкости аккумулятора в текущий момент сразу получить не удастся: связано это с тем, как приложение «вынуждено» её подсчитывать и корректировать, прежде чем числа станут близкими к действительным. Общий порядок действий в контексте рассматриваемой темы:

  1. После запуска приложения и нескольких приветственных экранов с информацией о его возможностях, на вкладке «Зарядка» проверьте, правильно ли приложение определило «Проектную ёмкость» (она же «паспортная емкость») вашего аккумулятора. Если нет, нажмите «Установите проектную емкость» и задайте правильное число.
  2. Узнать емкость заводского аккумулятора можно из характеристик телефона в Интернете или с помощью ещё одного стороннего приложения: AIDA64 очень точно отображает паспортную емкость для смартфонов популярных марок (AccuBattery в этом аспекте может ошибаться).
  3. После первого запуска пункт «Вычисленная ёмкость» (именно то, что нас интересует) будет пустым. Наша задача — набраться терпения и пользоваться телефоном. О том, что следует при этом учесть — далее, после рассматриваемых шагов.
  4. Уже после первой зарядки вашего Android телефона, в пункте «Вычисленная ёмкость» появятся данные о емкости в мАч (mAh), рассчитанные на текущий момент времени. В дальнейшем, по мере продолжения отслеживания, эти данные будут корректироваться и становиться более точными.
  5. Также по мере использования (не с первого дня) начнет заполняться график «Ёмкость батареи» внизу вкладки «Здоровье» в AccuBattery.

Это почти всё: если вам нужны более точные данные о ёмкости аккумулятора вашего Android телефона позвольте приложению собирать информацию в течение недели-двух. При этом следует учесть следующие нюансы:

  • После установки приложения оно по умолчанию настраивается таким образом, что при достижении заряда 80% предлагает завершить зарядку (это может положительно сказаться на общем сроке службы аккумулятора).
  • Одновременно с этим, большинство пользователей стараются не разряжать батарею до конца, так как знают о том, что это вредит Li-Ion/Li-Pol аккумуляторам.
  • Первые два пункта (зарядка не до конца и после лишь частичного разряда) ведут к тому, что рассчитываемые данные о емкости оказываются менее точными.

Как поступить с этим — решать вам. Я рекомендую в течение недели заряжать телефон до 100% и разряжать до 20-30%, данные получаются относительно точными, а процесс будет щадящим для аккумулятора.

Дополнительные сведения

В завершение — дополнительная информация, которая может оказаться полезной:

  • Когда вы меняете аккумулятор в мастерской или приобретаете (особенно у товарищей из поднебесной) и устанавливаете его сами, слова «оригинальный» и приятные числа вида «4000 mAh» часто оказываются далеки от истины.
  • Многие сайты, схожие с тем, на котором вы сейчас находитесь, предлагают инструкции на тему «Как откалибровать батарею Android», которые сводятся к полному заряду (иногда с некоторыми нюансами) и последующему полному разряду аккумулятора и сообщениям о том, что это позволит телефону «оценить» и точнее показывать процент заряда или увеличит емкость. Первое, с некоторыми оговорками, — в какой-то степени верно: производимый время от времени (раз в месяц-три) полный цикл заряда/разряда позволяет специальному чипу на аккумуляторе в дальнейшем передавать более точные числа процента заряда, которые, в свою очередь, показывает вам телефон. Однако: даже если вы решили это сделать, и увидели совет, что этот цикл стоит выполнить несколько раз подряд на новом телефоне или новой батарее, настоятельно рекомендую не прислушиваться. Второе — полностью неверно сегодня, если только в вашем телефоне не установлена NiMh/NiCd батарея (теоретически это возможно, но только на очень старых устройствах, в последние годы мне таких встречать не доводилось).
  • Если ваш телефон внезапно отключается или моментально разряжается, достигнув определенного процента заряда (50%-30%), обычно это говорит не о проблемах с калибровкой, как это описано в предыдущем пункте, а связано с первым пунктом (в случае относительно новой батареи) или же с сильным износом/повреждениями аккумулятора.
  • Если вам интересно разобраться с правдой и вымыслом на тему современных аккумуляторов и особенностях их работы, а также вы готовы к тому, что это будет не на русском языке (но очень понятно для начинающих), лучшего ресурса чем https://batteryuniversity.com/learn/, пожалуй, не найти.
  • В известном китайском интернет-магазине по запросу phone battery meter вы можете найти недорогие аппаратные измерители емкости батареи.

Евгений Васильев Подписаться Руки у меня золотые, да вот только растут они не из того места 10 ноября, 2018

Как измерить емкость батареи смартфона © news.usc.edu

Покупая телефон, особенно китайский, многим хочется узнать, насколько соответствует реальная емкость его аккумулятора заявленной. Многие также желают узнать, насколько износилась батарея их смартфона после определенного периода эксплуатации. Особенно часто такое желание возникает, если девайс начинает держать заряд ощутимо хуже, чем после покупки.

Проверить емкость аккумулятора телефона можно несколькими способами, как программными, так и аппаратными. Первые удобнее, так как требуют только установки приложения и тестирования в нем. Однако проверка аккумулятора на аппаратном уровне, с помощью специального оборудования, иногда бывает точнее.

В чем правильно измерять емкость аккумулятора

Начать стоит с определения единиц, в которых правильно измерять емкость аккумулятора. Многие считают таковыми миллиампер-часы (мАч), что не совсем верно. Измерять в мАч можно только относительную разницу в емкости между двумя батареями одного типа и напряжения.

Дело в том, что электрическая мощность вычисляется путем умножения рабочего напряжения (вольты) на силу рабочего тока (амперы). Единица измерения этой мощности – ватт. Количество энергии – это мощность, которая может быть выдана за период времени (часы). Соответственно, при ее измерении – к вольтам и амперам добавляются часы. Правильная единица измерения емкости аккумулятора – ватт-часы (Втч).

Емкость в ватт-часах – это электрическая мощность, которую аккумулятор может выдавать в течение часа. Соответственно, объем 10 Втч указывает, что при выдаче мощности 10 Вт батарея протянет ровно час, а если снизить нагрузку до 5 Вт – 2 часа, 1 Вт – 10 часов. Напряжение и сила тока сравниваемых аккумуляторов при этом не имеют значения, так как ватт-час – единица самостоятельная, абсолютная.

Измеряя емкость батареи в мАч, мы учитываем только ток (миллиамперы), но не напряжение (вольты). Если два аккумулятора, на 2000 мАч и 4000 мАч, имеют одинаковое напряжение, то второй больше первого ровно вдвое. Но если первый выдает при этом 4 вольта (литий-ионный), а второй – только 2 (свинцово-кислотный, 1 ячейка), то аккумуляторы будут одинаковыми. Ведь если умножить 2000 мАч (2 Ач) на 4 вольта – будет 8000 милливатт-часов (8 Втч), а если умножить 4000 мАч на 2 вольта – в итоге тоже будет 8000 мВтч.

Из-за того, что ампер-часы без учета напряжения в конкретный момент времени не позволяют определить количество энергии, не стоит оценивать объем аккумулятора телефона по показателям мАч, которые выдает USB-тестер.

KWS -V21

Среднее напряжение литиевой батареи смартфона составляет чуть меньше 4 вольт, и показатель мАч в характеристиках указывается для него. Зарядка телефона же обычно производится напряжением 5 вольт (от 5 до 12 при поддержке быстрой зарядки). Поэтому, если за время зарядки от 0 до 100% прибор показал 3000 мАч, а КПД зарядки около 100%, то в батарею залилось 15 Втч энергии.

С учетом понижения напряжения на батарее до 3,8 вольт, это значит, что емкость аккумулятора в единицах, используемых производителем, составляет около 3,94 Ач или 3940 мАч (15 Втч, разделенные на 3,8 вольт). Так что не спешите обвинять китайцев, будто они «не долили» миллиампер-часов, если прибор показывает меньше, чем должно быть.

Как проверить емкость аккумулятора телефона USB-тестером

Как уже говорилось выше, самый простой способ проверить емкость батареи телефона – использовать USB тестер.

USB Safety Tester J7-T

Такой прибор с одной стороны содержит штекер USB, которым вставляется в блок питания, с другой – гнездо USB, в которое смартфон подключается кабелем. Также прибор содержит экран, на которые выводятся показатели тестирования.

RD UM24C — продвинутый тестер аккумулятора смартфона © Rd Tech

Разновидностей USB-тестеров много: от простеньких за пару долларов, умеющих только показывать вольты, амперы и считать мАч – до продвинутых профессиональных в десятки раз дороже. Последние часто оснащаются цветными экранами, умеют считать ватт-часы в готовом виде, поддерживают быструю зарядку, учитывают КПД, могут синхронизироваться с ПК для построения графиков и т.д. Чтобы просто проверить емкость аккумулятора телефона – достаточно и простенького приспособления, вроде того, что на иллюстрации.

KCX-017

KCX-017 — бюджетный тестер батареи смартфона © Megadevice

Чтобы провести замеры – разрядите смартфон «в ноль». Затем подключите тестер в зарядное устройство, к тестеру подсоедините кабелем свой аппарат, и оставьте заряжаться до 100%. Когда батарея зарядится – тестер покажет, сколько энергии в нее залито.

Если прибор умеет показывать ватт-часы – это и есть количество энергии. Чтобы перевести его в мАч, разделите полученное число на напряжение 3,8 вольт, и умножьте на примерно 0,9 (так как КПД редко превышает 90%). То есть, если прибор показывает 10 ватт-часов (10 Wh), то (10/3,8)*0,9=2,37 Ач или 2370 мАч составляет объем батареи. Если заявленная в характеристиках смартфона емкость – 2500 мАч, то износ батареи около 5%.

Если USB тестер измеряет только мАч, то нужно делать поправку на разницу напряжений. Для этого сначала умножьте число мАч на 5 (вольт), а затем полученный результат (это будут милливатт-часы) разделите на 3,8 и умножьте на 0,9.

При показаниях тестера 4669 мАч емкость аккумулятора смартфона составит 4669*5=23345 мВтч, (23345/3,8)*0,9=5529 мАч. То есть, хоть прибор и указал только 4669 мАч, но емкость батареи телефона в единицах, указанных в характеристиках – около 5529 мАч.

Shopper.Life

Как измерить емкость батареи телефона программным способом

Если у вас нет тестера, измерить емкость батареи смартфона можно с помощью специальных приложений. Один из лучших вариантов такого – AccuBattery. Бесплатная версия программы обладает широкой функциональностью и умеет вычислять рабочие параметры аккумулятора. Скачать ее можно в Google Play.

Для тестирования установите программу на смартфон, а затем рязрядите его до выключения. Поставьте устройство на зарядку, включите и запустите приложение. Во вкладке «Зарядка» внизу установите проектную емкость, указанную производителем, если она отображается неправильно. Оставьте устройство заряжаться, желательно, до 100%.

Когда смартфон зарядится – вы можете перейти в программе во вкладку «Здоровье». Там отображается текущий показатель емкости, рассчитанный на основе данных, встроенных в контроллер заряда в телефоне. Программа автоматически рассчитывает степень износа аккумулятора и показывает его.

AccuBattery

Если держать AccuBattery в фоне постоянно – приложение может формировать графики износа, чтобы вы могли определять, насколько быстро деградирует батарея в вашем телефоне.

Минусом AccuBattery, как и любого аналога, является большая зависимость от точности бортовых сенсоров смартфона. Ведь расчеты ведутся на основе показателей вольтметра и амперметра, встроенных в контроллер заряда. Если эти датчики неточны, искажают информацию – то и конечные показатели будут некорректными.

Хуже всего программные методы работают (точнее, на работают) с дешевыми китайскими смартфонами из ценового диапазона около $100. Такие устройства, с целью удешевления, часто лишают полноценных датчиков. Если они и есть (а измерять напряжение и ток умеет любой контроллер батареи на плате смартфона), то доступ к данным сенсорам из операционной системы отсутствует. В таком случае измерить емкость аккумулятора телефона программой не получится.

Помимо тестеров и программ, есть и более точные способы измерения емкости батареи. Имеются полноценные тестеры для проведения замеров на батареях, отключенных от смартфона. Такие часто используются для тестов, например, круглых аккумуляторов форматов 18650, 14500 и тому подобных.

This entry was posted in Ремонт. Bookmark the <a href="https://kabel-house.ru/remont/akb/" title="Permalink to АКБ" rel="bookmark">permalink</a>.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *