УЗО и дифавтомат

Устройство и принцип действия

Для начала приведем обозначение на схеме по ГОСТ, по которому наглядно видно, из чего состоит дифавтомат:

На обозначении видно, что основными элементами конструкции дифавтомата является дифференциальный трансформатор (1), электромагнитный (2) и тепловой (3) расцепители. Ниже кратко охарактеризуем каждый из приведенных элементов.

Дифференциальный трансформатор имеет несколько обмоток, в зависимости от количества полюсов устройства. Данный элемент осуществляет сравнение токов нагрузки по проводникам и в случае их несимметричности на выходе вторичной обмотки данного трансформатора появляется так называемый ток утечки. Он поступает на пусковой орган, который без выдержки времени осуществляет расцепление силовых контактов автомата.

Также следует упомянуть о кнопке проверки работоспособности защитного аппарата «TEST». Данная кнопка подключается последовательно с сопротивлением, которое включается или отдельной обмоткой на трансформатор либо параллельно одной из имеющихся. При нажатии на данную кнопку сопротивление создает искусственный небаланс токов – возникает дифференциальный ток и дифавтомат должен сработать, что свидетельствует о его исправном состоянии.

Электромагнитный расцепитель представляет собой электромагнит с сердечником, который воздействует на механизм отключения. Данный электромагнит срабатывает в случае достижения тока нагрузки порога срабатывания — обычно это случается при возникновении короткого замыкания. Данный расцепитель срабатывает мгновенно, за доли секунд.

Тепловой расцепитель осуществляет защиту электрической сети от перегрузки. Конструктивно представляет собой биметаллическую пластину, которая деформируется при протекании через нее тока нагрузки, превышающего номинальный для данного аппарата. При достижении определенного положения биметаллическая пластина воздействует на механизм отключения дифавтомата. Срабатывание теплового расцепителя происходит не сразу, а с выдержкой времени. Время срабатывания прямо пропорционально величине тока нагрузки, протекающего по дифференциального автомату, а также зависит от температуры окружающей среды.

На корпусе указывается порог срабатывания дифференциального трансформатора — ток утечки в мА, номинальный ток теплового расцепителя (при котором работает неограниченное время) в А. Пример маркировки на корпусе — С16 А / 30 мА. В данном случае маркировка “С” перед значением номинала показывает кратность срабатывания электромагнитного расцепителя (класс аппарата). Буква “С” указывает, что электромагнитный расцепитель сработает при превышении номинала 16А в 5-10 раз.

На видео ниже подробно рассказывается, как работает и из чего состоит дифавтомат:

Область применения

Для чего применяют дифференциальный автомат, если существует два отдельных защитных аппарата (УЗО и автомат), каждый из которого выполняет свою функцию?

Основное преимущество дифавтомата — компактность. Он занимает меньше места на DIN-рейке в электрическом распределительном щитке, чем в случае установки двух отдельных аппаратов. Эта особенность особенно актуальная при необходимости установки в распределительном щитке нескольких устройств защитного отключения и автоматических выключателей. В данном случае посредством установки дифавтоматов можно значительно сэкономить место в распределительном щитке и соответственно уменьшить его размер.

Дифференциальный автомат широко применяется для защиты электропроводок практически повсеместно, как в быту, так и в помещениях другого назначения (в различных учреждениях, на предприятиях).

Дифавтомат ничем не уступает аналогичным по характеристикам УЗО и автоматическому выключателю, поэтому каких-либо ограничений в его применении нет. Данный защитный аппарат можно устанавливать, как на вводе (в качестве резервирующего), так и на отходящих линиях электропроводки для обеспечения пожаробезопасности, безопасности людей в отношения поражения электричеством, а также для защиты от сверхтоков.

Вот мы и рассмотрели устройство, назначение и принцип работы дифавтомата. Надеемся, предоставленная информация была для вас полезной и интересной!

Наверняка вы не знаете:

  • Схема подключения дифференциального автомата
  • Как найти короткое замыкание в сети
  • Что такое УЗО в электрике

Различие между дифавтоматом и УЗО

Функция защитного устройства – отключение электрической цепи только в случае возникновения утечки тока, т.е. это просто прибор, включенный в сеть, для которого необходима защита. УЗО является модулем, который обнаруживает утечку тока (например, при повреждении изоляции) и дает команду силовому механизму на отключение цепи. При этом УЗО не может защитить сеть от перегрузок или КЗ. Попросту говоря, если в вашей электропроводке произойдет замыкание или будут превышены все нормы нагрузки, все провода сгорят вместе с УЗО.
Дифференциальный автомат – электротехническая сборка, включающая в себя и защиту от утечки тока и защиту от замыкания, плюс перегрузок. При этом дифавтомат защищает и сам себя. Отличить оба прибора можно и визуально. На дифреле стоит обозначение, исполненное крупными буквами; например, «16А», указывающее номинальный ток. Если же на корпусе прибора перед большой цифрой стоит латинская буква, например, «С16», то перед вами – дифавтомат («С» характеризует тип расцепителя, рассчитанного на 16А). Если на приборах имеются обозначения на русском языке, то «ВД» будет означать, что у вас УЗО, если же написано АВДТ, то это «автоматический выключатель дифференциального типа».

В идеальной электрической цепи сопротивление изоляции стремится к бесконечности. К сожалению, на практике не все так однозначно. Какой бы качественной не была изоляция провода или других токоведущих элементов оборудования, это конечная величина, а, следовательно, даже при штатной работе происходит незначительная утечка тока. Ситуация в корне меняется, когда этот параметр превышает установленные нормы, чем это грозит и как определить утечку Вы узнаете прочитав статью.

Что такое утечка тока и чем она опасна

Эквивалентная схема 3-х фазной электросети с изолированной нейтралью

Начнем с терминологии. Точное определение этого явления описано в ГОСТ 61140 2012 и ГОСТ 30331.1 2013, далее дословно: «Электрический ток, протекающий в землю, открытые, сторонние проводящие части и защитные проводники при нормальных условиях». Для более детального описания явления приведем в качестве примера эквивалентную схему 3-х фазной электрической сети IT (изолированная нейтраль).

Обозначения:

  • А, В, С – фазы сети.
  • Ra, Rb, Rс – величина активного сопротивления между землей и каждой фазой.
  • Са, Сb, Сс – параметры емкости линий относительно земли.
  • Ua, Ub, Uc – напряжение каждой из фаз по отношению к земле.
  • Ia, Ib, Ic – токи утечки.

В приведенном примере активное сопротивление Ra, Rb, Rс не стремиться к бесконечности, а вполне измеряемая величина. Соответственно и токоведущих проводников емкость относительно земли (Са, Сb, Сс) будет какую-то величину больше нуля. Следовательно, в токоведущих частях с напряжениями Ua, Ub, Uc будут образовываться токи утечки Ia, Ib, Ic.

Пути таких токов напрямую зависят от того, какой тип заземления используется в системе. В приведенном примере с изолированной нейтралью (IT), утечка происходит через изоляцию проводов в токопроводящие элементы оборудования. Из них по проводникам, соединенным с ЗУ, уходит в зону растекания (локальную землю).

В системах с глухозаземленной нейтралью (TN) ток утечки по шине PEN течет до ЗУ на вводе электропитания.

Причины возникновения утечки тока

Из приведенной выше информации мы выяснили, что утечка происходит всегда, даже при штатной работе электрического оборудования. Опасность представляет превышение нормальных показателей. Давайте рассмотрим ситуации, когда превышаются допустимые нормы дифференциальных токов, чтобы установить причины возникновения неисправности.

С электроприбора в квартире или доме

Опасное напряжение может появиться на корпусе бытового электроприбора, например, накопительного нагревателя воды (бойлера) или стиральной машины. Как правило, причина этого нарушение целостности одного из ТЕНов или механическое повреждение изоляции. К чему приведет пробой на корпус, зависит от системы заземления жилого помещения. Рассмотрим варианты с трехпроводным подключением стиральной машины в системе TN-C-S и двухпроводное подключение при заземлении TN-C.

Рисунок 3. Пробой на корпус в системах: А) TN-C-S; В) TN-C

Как видно из рисунка в случае пробоя на заземленный корпус ток утечки будет на шину-PE, что приведет к срабатыванию электромагнитной или тепловой защиты автоматического выключателя, установленного на линию питания электроустановки.

При двухпроводном подключении утечка тока не вызовет срабатывание АВ и стиральная машина будет продолжать работать, пока не образуется дифференциальный ток. Это может произойти в случае одновременного касания корпуса электроустановки и заземленного элемента конструкции здания или труб водоснабжения. Ток утечки в этом случае пойдет от корпуса через тело человека на землю (см. В рис.3). Величины тока в образованной цепи будет недостаточно для срабатывания АВ, но УЗО или диффавтомат обнаружит утечку и произведет отключение оборудования.

В скрытой электропроводке в доме или квартире

Причины утечки в скрытых проводках напрямую связаны со снижением уровня изоляции токоведущих жил кабеля. Это может быть вызвано следующими причинами:

  1. Превышение допустимого срока службы проводки. Это довольно распространенное явление в домах возведенных 30-40 лет назад и более давних постройках. Согласно нормативным документам (в частности ВСН 58 88) срок эксплуатации срытых электропроводок, выполненных кабелем с медными токоведущими жилами, не может превышать 40 лет. Для алюминиевых проводов установлен срок службы не более 30 лет.
  2. Нарушения режимов эксплуатации. Если проводка подвергалась перегрузке, то велика вероятность разрушения изоляции вследствие нагрева токоведущих жил.
  3. Механические повреждения изоляции провода. Они могут быть нанесены из-за не соблюдения технологии монтажных работ или впоследствии при сверлении стен.

Причины повреждения изоляции кабеля скрытой проводки

Не следует надеяться на постоянную величину сопротивления изоляции, при малейших подозрениях следует проверить этот показатель.

В автомобиле

Рассматриваемое нами явление нередко наблюдается и в электросети автомобиля. Причем вероятность утечки может не зависеть марки авто и его состояния. Результат потери тока во всех случаях приводит к одному итогу – разряду аккумулятора. Предлагаем рассмотреть наиболее вероятные причины утечки тока в электрической сети автотранспортного средства.

С аккумулятора

Основные функции АКБ заключаются в запуске мотора автомобиля и обеспечении питания внутренней сети, в тех случаях, когда генератор не справляется с этой задачей. Подзарядка аккумуляторной батареи производится в процессе работы двигателя, также вращающего генератор. У припаркованной машины с выключенным ДВС разряд АКБ происходит за счет питания подключенной электроники (например, сигнализации) и допустимого тока утечки.

Если недавно заряженный аккумулятор быстро разрядился, не спешите сваливать на него всю вину, вполне возможно, что произошло превышение допустимой величины утечки по следующим причинам:

  1. Повреждение изоляции бортовой сети, КЗ в блоке предохранителей.
  2. Неправильно подключенная электроника и/или сигнализация потребляет ток сверх установленной нормы.
  3. Загрязнение или окисление клемм аккумулятора.
  4. Подключение дополнительных электрических приборов.

Плохой контакт клемм АКБ – одна из причин ее быстрого разряда

Как измерить заряд автомобильного аккумулятора и его утечку, было описано на нашем сайте.

Через генератор

Как показывает практика, довольно часто причина утечки через генератор связана с «пробитием» одного из диодов выпрямительного блока. На представленном ниже рисунке приведена упрощенная схема подключения АКБ к генератору, в котором «пробит» один из силовых диодов.

Путь тока утечки через поврежденный выпрямительный диод

Как производить поверку генератора, можно прочитать на нашем сайте.

Через сигнализацию

Практически все современные системы охраны для понижения потребления электричества с целью снижения разряда батареи переходят в режим «сна». Иногда может возникнуть сбой ПО или произойти другая неисправность, устранить которую довольно сложно. В результате сигнализация потребляет ток сверх допустимой нормы, что приводит к разряду АКБ. Особенно в этом замечена китайская продукция.

С диодов, транзисторов, конденсаторов

В данных радиоэлементах всегда присутствует незначительный уровень тока утечки, его показатели указываются в даташит к каждому компоненту. При выходе из строя транзистора, диода или конденсатора этот показатель может существенно увеличиться.

Последствия

Как мы уже говорили, протекание дифференциальных токов происходит даже при наличии изоляции должного уровня. Из-за их низкой величины не возникает деструктивных последствий. Ситуация в корне изменяется, когда утечка превышает допустимую норму. В таких случаях возможны следующие последствия:

  • Угроза поражения электротоком.
  • Вероятность возникновения пожара.
  • Протекание дифференциального тока в сети приводит к тому, что даже при отключенных потребителях электроэнергии по показаниям приборов учета будет наблюдаться расход электричества.
  • Электрический ток, проходя через неизолированные токопроводящие конструкции, вызывает их ускоренную коррозию. Что можно наглядно наблюдать на клеммах аккумуляторных батарей.
  • Утечка в бортовой сети автомашины может вызвать воспламенение проводки и практически всегда становится причиной разряда аккумуляторной батареи, что создает проблемы цепи зажигания.

Перечисленных последствий вполне достаточно, чтобы осознать опасность дифференциального тока, поэтому поговорим о способах защиты и устранении утечки.

Как проверить и найти ток утечки своими руками

Приведем несколько косвенных способов, позволяющих обнаружить утечку:

  • Если при отключении от сети всех постоянных потребителей электрической энергии, счетчик продолжить регистрировать расход электроэнергии, значит необходимо приступать к поиску и устранению неисправности. То есть, ищите утечку.
  • При наличии бойлера вода, поступающая с кранов, вызывает ощущение прохождения электричества.
  • Срабатывает защита УЗО или диффавтомата.
  • В системе TN-C-S происходит отключение АВ.
  • Быстро разряжается аккумулятор автомобиля.

Теперь перейдем к более точным измерениям, для этого могут понадобиться следующие инструменты:

  • Простой или бесконтактный пробник напряжения. С их помощью можно определить наличие напряжения на корпусе бытовых приборов или смесителях, то есть, обнаружить утечку.
  • Токоизмерительные клещи, вместо них можно использовать мультиметр с режимом амперметра. При помощи этих инструментов снимаются показания амперметра, что позволяет измерить дифференциальные токи. После проведения измерений показатели прибора (амперметра) сравниваются с допустимыми параметрами. Обратим внимание, что контакты амперметра могут быть не приспособлены для замера больших величин, в таких случаях токовые клещи более удобны.
  • Авометр (необходим для проверки изоляции). Диапазон измерения выставляется в мегаомах, если сопротивление несколько сот кОм, то это говорит о недостаточной изоляции.

И несколько видео по теме (пример того, как искать утечку тока в автомобиле):

Внимание! Измерение сопротивления должно проводиться при полном отключении источника питания, то есть нуля и фазы для переменно напряжения и плюса и минуса в системах постоянных токов. Рекомендуется перед проверкой изоляции провести замеры в режиме измерения постоянного или переменного напряжения (в зависимости от типа сети).

Советуем также почитать:

  • Принцип работы узо и схема подключения
  • Что такое потери электроэнергии в электрических сетях?

В данной статье мы рассмотрим следующие вопросы:

  1. Что такое УЗО
  2. Устройство и принцип работы УЗО .
  3. Схема подключения УЗО.
  4. Ошибки в схемах подключения из-за которых выбивает УЗО.
  5. Как выбрать УЗО? Типы и характеристики УЗО.
  1. Что такое УЗО

УЗО (Устройство Защитного Отключения) — это коммутационный аппарат предназначенный для защиты электрической цепи от токов утечки, то есть токов протекающих по нежелательным, в нормальных условиях эксплуатации, проводящим путям, что в свою очередь обеспечивает защиту от пожаров (возгорания электропроводки) и от поражения человека электрическим током.

Определение «коммутационный» означает, что данный аппарат может включать и отключать электрические цепи, другими словами производить их коммутацию.

УЗО так же имеет другие варианты названий, например: дифференциальный выключатель, выключатель дифференциального тока, (сокращенно выключатель диф тока) и т.п.

  1. Устройство и принцип работы УЗО

И так для наглядности представим простейшую схему подключения через УЗО лампочки:

Из схемы видно, что при нормальном режиме работы УЗО, когда его подвижные контакты замкнуты, ток I1 величиной, к примеру, 5 Ампер от фазного провода проходит через магнитопровод УЗО, затем через лампочку, и возвращается в сеть по нулевому проводнику, так же через магнитопровод УЗО, при этом величина тока I2 равна величине тока I1 и составляет 5 Ампер.

Согласно закону электромагнитной индукции ток I1 проходя через магнитопровод УЗО создает в нем магнитный поток Ф1 условной величиной равной 5 единиц, в свою очередь ток I2 так же создает в магнитопроводе магнитный поток Ф2 такой же величины равной 5 единиц, но так как направление тока I2 противоположно направлению тока I1, то и создаваемый им магнитный поток Ф2 так же противоположен магнитному потоку Ф1, т.е. магнитные потоки Ф1 и Ф2 направлены встречно по отношению друг к другу и соответственно, при равных значениях входящего и выходящего токов, уравновешивают друг друга, в результате чего суммарный магнитный поток в магнитопроводе равен нулю:

Фсумм= Ф1+ Ф2=5+(-5)=0

Так как суммарный магнитный поток в магнитопроводе отсутствует (равен нулю), во вторичной обмотке ток не индуктируется. Подвижные контакты замкнуты, электрическая цепь включена и находится в нормальном режиме работы.

Теперь представим, что одного из проводов электрической цепи коснулся человек. При этом часть электрического ток начинает протекать через тело человека создавая непосредственную угрозу для его жизни и здоровья:

В такой ситуации часть тока электрической цепи поступающая от фазного провода не будет возвращаться в сеть, а проходя через тело человека будет уходить в землю следовательно ток I2 который будет возвращаться в сеть через магнитопровод УЗО по нулевому проводу будет меньше тока I1 поступающего в сеть, соответственно и величина магнитного потока Ф1 станет больше величины магнитного потока Ф2, в результате чего в магнитопроводе УЗО суммарный магнитный поток уже не будет равен нулю.

К примеру ток I1=6А, ток I2=5,5А, т.е. 0,5 Ампера протекает через тело человека в землю (т.е. 0,5 Ампера — ток утечки), тогда магнитный поток Ф1 будет равен 6 условных единиц, а магнитный поток Ф2 — 5,5 условных единиц тогда суммарный магнитный поток будет равен:

Фсумм= Ф1+ Ф2 =6+(-5,5)=0,5 усл. ед.

Возникший суммарный магнитный магнитный поток индуктирует электрический ток во вторичной обмотке который проходя через магнитоэлектрическое реле приводит его в работу, а оно, в свою очередь, размыкает подвижные контакты отключая электрическую цепь.

Проверка работоспособности УЗО осуществляется нажатием кнопки «ТЕСТ». Нажатие данной кнопки искусственно создает в УЗО утечку тока, что должно привести к отключению УЗО.

  1. Схема подключения УЗО.

ВАЖНО! Так как в УЗО отсутствует защита от сверхтоков, при любой схеме его подключения должна быть предусмотрена так же установка автоматического выключателя, для защиты УЗО от токов перегрузки и короткого замыкания.

Подключение УЗО осуществляется по одной из следующих схем, в зависимости от типа сети:

Подключение УЗО без заземления:

Такая схема применяется, как правило, в зданиях со старой электропроводкой (двухпроводной), в который отсутствует заземляющий провод.

Подключение УЗО с заземлением:

Схема подключения УЗО в электросети системы ТN-C-S (когда нулевой проводник разделяется на нулевой рабочий и нулевой защитный):

Схема подключения УЗО в электросети системы ТN-S (когда нулевой рабочий и нулевой защитный проводники разделены):

ВАЖНО! В зоне действия УЗО нельзя объединять нулевой защитный (провод заземления) и нулевой рабочий проводники! Другими словами нельзя в схеме, после установленного УЗО, соединять между собой рабочий ноль (синий провод на схеме) и провод заземления (зеленый провод на схеме).

  1. Ошибки в схемах подключения из-за которых выбивает УЗО.

Как было сказано выше УЗО срабатывает на токи утечки, т.е. если сработало УЗО — это значит, что произошло попадание человека под напряжение или по какой либо причине оказалась повреждена изоляция электропроводки или электрооборудования.

Но что если УЗО самопроизвольно срабатывает и при этом повреждений нигде нет, а подключенное электрооборудование исправно? Возможно все дело в одной из следующих ошибок в схеме сети защищаемой УЗО.

Одной из самых распространенных ошибок является объединение нулевого защитного и нулевого рабочего проводника в зоне действия УЗО:

В этом случае величина тока выходящего из сети через УЗО по фазному проводу будет больше чем величина тока возвращающегося в сеть по нулевому проводнику т.к. часть тока будет протекать мимо УЗО по проводнику заземления, что приведет к срабатыванию УЗО.

Так же, часто встречаются случаи использования в качестве нулевого рабочего проводника проводник заземления или стороннюю проводящую заземленную часть (например арматуру здания, систему отопления, водопроводную трубу). Такое, подключение как правило происходит при повреждении нулевого рабочего проводника:

Оба этих случая приводят к тому, что УЗО выбивает, т.к. ток выходящий из сети по фазному проводу ток через УЗО не возвращается обратно в сеть.

  1. Как выбрать УЗО? Типы и характеристики УЗО.

Что бы правильно подобрать УЗО и исключить возможность ошибки воспользуйтесь нашим онлайн калькулятором расчета УЗО по мощности.

УЗО выбирается по его основным характеристикам. К ним относятся:

  1. Номинальный ток — максимальный ток при котором УЗО способно длительно работать не теряя свою работоспособность;
  2. Дифференциальный ток — минимальный ток утечки при котором УЗО произведет отключение электрической цепи;
  3. Номинальное напряжение — напряжение при котором УЗО способно длительно работать не теряя свою работоспособность
  4. Тип тока — постоянный (обозначается «-«) или переменный (обозначается «~»);
  5. Условный ток короткого замыкания — ток который кратковременно может выдержать УЗО до момента пока не сработает защитная аппаратура (предохранитель или автоматический выключатель).

Выбор УЗО основывается на следующих критериях:

— По номинальному напряжению и типу сети: Номинальное напряжение УЗО должно быть больше либо равно номинальному напряжению защищаемой им цепи:

Uном. УЗО⩾ Uном. сети

При однофазной сети требуется двухполюсное УЗО, при трехфазной сети — четырехполюсное.

— По номинальному току: Номинальный ток УЗО должен быть больше либо равен расчетному току защищаемой им цепи, т.е. тому току на который рассчитана данная электрическая сеть:

Iном. УЗО⩾ Iрасч. сети

Расчет тока сети можно произвести с помощью нашего онлайн калькулятора, либо его можно определить самостоятельно по формуле

Iсети=Pсети*Кп, Ампер

где: Pсети — мощность сети, в килоВаттах; Кп — коэффициент перевода равный: 1,52 -для сети 380 Вольт или 4,55 — для сети 220 Вольт:

После расчета тока электросети принимаем ближайшее большее стандартное значение номинального тока УЗО: 4А, 5А, 6А, 8А, 10А, 13А, 16А, 20А, 25А, 32А, 40А, 50А, 63А и т.д., при этом рекомендуется принять УЗО с номинальным током на ступень выше рассчитанного, например, если в результате расчета ток сети составил 22 Ампера, то ближайшим стандартным значением номинального тока УЗО будет 25 Ампер, однако выбрать УЗО следует с номинальным током на ступень выше, т.е. 32 Ампера.

Мощность сети определяется путем суммирования мощностей всех электроприемников подключаемых в сеть защищаемую рассчитываемым УЗО:

Pсети=(P1+ P2…+ Pn)*Кс, кВт

где: P1, P2, Pn — мощности отдельных электроприемников в килоВаттах; Кс — коэффициент спроса (Кс=от 0,65 до 0,8) в случае если в сеть подключается всего 1 электроприемник или группа электроприемников которые включаются в сеть одновременно Кс=1.

В качестве мощности сети так же можно принять максимальную разрешенную к использованию мощность, например из технических условий, проекта или договора электроснабжения при их наличии.

Т.к. УЗО не имеет защиты от токов короткого замыкания, оно должно быть защищено установленным в цепи предохранителем или автоматическим выключателем. Номинальный ток УЗО так же можно выбрать исходя из номинального тока предохранителя или автоматического выключателя, при этом рекомендуется что бы номинальный ток УЗО был на ступень выше номинального тока аппарата защиты.

Например: Вы определили расчетный ток сети который составил 22А (Ампера), из линейки стандартных номиналов: 4А, 5А, 6А, 8А, 10А, 13А, 16А, 25А, 32А, 40А, 50А, 63А, вы выбрали ближайшее значение номинального тока автоматического выключателя — 25А, тогда УЗО вам рекомендуется взять с номинальным током 32А.

— По дифференциальному току:

Дифференциальный ток — это одна из главных характеристик УЗО которая показывает при какой величине тока утечки УЗО отключит цепь.

В соответствии с пунктом 7.1.83. ПУЭ: Суммарный ток утечки сети с учетом присоединяемых стационарных и переносных электроприемников в нормальном режиме работы не должен превосходить 1/3 номинального тока УЗО. При отсутствии данных ток утечки электроприемников следует принимать из расчета 0,4 мА на 1 А тока нагрузки, а ток утечки сети — из расчета 10 мкА на 1 м длины фазного проводника. Т.е. дифференциальный ток сети можно рассчитать по следующей формуле:

ΔIсети=((0.4*Iсети)+(0.01*Lпровода))*3, миллиАмпер

где: Iсети — ток сети (рассчитанный по формуле выше), в Амперах; Lпровода — общая длина проводки защищаемой электросети в метрах.

Рассчитав ΔIсети принимаем ближайшее большее стандартное значение дифференциального тока УЗО ΔIУЗО:

ΔIУЗО⩾ ΔIсети

Стандартными величинами дифференциального тока УЗО являются: 6, 10, 30, 100, 300, 500мА

Дифференциальные токи: 100, 300 и 500мА применяются для защиты от пожаров, а токи : 6, 10, 30мА — для защиты от поражения человека электрическим током. При этом токи 6 и 10мА применяются, как правило, для защиты отдельных потребителей и помещений с повышенной опасностью, а дифференциальный ток 30мА подходит для общей защиты электросети.

В случае если УЗО необходимо для защиты от поражения электрическим током, а по произведенному расчету ток утечки составил более 30мА необходимо предусмотреть установку нескольких УЗО на разные группы линий, например одно УЗО для защиты розеток в комнатах, а второе для защиты розеток в кухне, снизив тем самым мощность проходящую через каждое УЗО и как следствие снизив ток утечки сети, т.е. в таком случае расчет необходимо будет производить для двух или более УЗО которые будут установлены на разные линии.

— По типу УЗО:

УЗО бывают двух типов: электромеханическое и электронное. Принцип работы электромеханического УЗО мы рассматривали выше, его основным рабочим органом является дифференциальный трансформатор (магнитопровод с обмоткой) который сравнивает величины уходящего в сеть тока и тока возвращающегося из сети, а в электронном эту функцию выполняет электронная плата для работы которой необходимо напряжение.

Представим ситуацию: по какой-то причине «пропал» ноль (например отгорел нулевой проводник), при этом если в сети установлено электронное УЗО его электронная плата обесточится и в случае, если человек коснувшись фазного провода попадет под напряжение данное УЗО не сработает, электромеханическое же УЗО сохранит свою работоспособность даже в случае отсутствия напряжения и отключит электрическую цепь, поэтому предпочтительнее использовать именно электромеханическое УЗО.

This entry was posted in Ремонт. Bookmark the <a href="https://kabel-house.ru/remont/uzo-i-difavtomat/" title="Permalink to УЗО и дифавтомат" rel="bookmark">permalink</a>.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *