Тепловой насос из холодильника

«Холодильник наоборот»: как работает тепловой насос

Владельцам частных домов в Украине хорошо известны твердотопливные и газовые котлы. Их принцип действия прост и понятен: сжигается определенный вид топлива и дом получает тепловую энергию. Но как работает альтернатива для котлов – тепловые насосы, знают не все.

Тепловой насос работает по принципу «отбора» тепла внешней среды для отопления жилища и подогрева воды. Основные типы тепловых насосов — воздушные и грунтовые. Воздушные тепловые насосы отбирают тепло из воздуха, но имеют низкий КПД. Грунтовые (геотермальные) тепловые насосы являются более эффективными отбирают тепло у земли либо грунтовых вод. Одна его часть вкопана в землю, другая размещается в доме. Его задача – взять тепловую энергию из одного места и перенести её в другое при помощи специальной жидкости (антифриза). Охлажденная жидкость попадает во внешнюю среду и нагревается на несколько градусов. После этого возвращается в основное рабочее тело теплового насоса, попадает в компрессор и отдает тепловую энергию, при этом остывая. Остывшая жидкость делает повторный круг, чтобы снова нагреться, а полученное тепло используется для обогрева дома.

Работа теплового насоса базируется на принципах цикла Карно, который был описан в его диссертации еще в далеком 1824 году. Практическое использование этого цикла была предложено лордом Кальвином в 1828 году.

Перед установкой теплового насоса в доме вначале необходимо рассчитать тепловые потери жилища. После этого подбирается соответствующее оборудование и рассчитывается оптимальное количество скважин под тепловой насос. Каждая скважина может дать определенное количество тепловой энергии. Для скважины теплового насоса глубиной 50 метров это будет около 3-4 киловатт.

Геотермальный тепловой насос может быть использован как для отопления дома, так и для подогрева воды, а также охлаждение жилища летом.

Читайте также: Как правильно повысить энергоэффективность жилища

Функционирование грунтовых тепловых насосов (их еще маркируют, как использующие систему «земля-вода») не зависит от сезона, так как температура воздуха на глубине 50 метров никогда не опускается ниже отметки в 5-6 градусов. Воздушные тепловые насосы (система «воздух-вода»), теряют свою эффективность уже при температуре минус 5 градусов по Цельсию.

Цены на тепловые насосы зависят от их мощности. Но общий принцип ценообразования такой, что 1 Киловатт энергии обойдется приблизительно в 1 тыс. долларов.

Срок окупаемости подобных систем – 5-6 лет. Касательно экономичности можно сказать, что отопление при помощи теплового насоса по сравнению с газовым отоплением дешевле приблизительно в 3 раза. Для примера можно взять хорошо утепленный дом площадью 200-220 метров. При использовании теплового насоса в 12 Киловатт в самый холодный период зимы за месяц владелец потратит на отопление 1,5-1,7 тысяч гривен. Если бы отопление обеспечивалось с использованием газа, сумма была бы на уровне 5-6 тысяч гривен.

Читайте также: Счетчик тепла в квартире – миссия (не)выполнима?

Каждое здание оборудовано системой вентиляции, именно она спасает саму постройку и жильцов от таких нежелательных явлений как повышенная влажность и застой воздуха. Повышенная влажность влияет на конструкцию здания, перекрытия и отделочные материалы, которые при плохой вентиляции подвергаются разрушительному воздействию коррозии.

Но вентиляционная система, без соответствующего современного оборудования, выбрасывает в воздух тысячи килокалорий тепла из наших помещений, увеличивая затраты на отопление жилища в холодное время года. Утилизировать тепло можно применяя современные методы и оборудование, которое поможет не только сохранить выбрасываемое в окружающее пространство драгоценное тепло, но и приумножить, получая его обратно в виде горячего водоснабжения, поступающего теплого приточного воздуха из вентиляции или теплых радиаторов отопления.

Для того чтобы эффективно утилизировать тепло, покидающее квартиры через вентиляционные отверстия, было придумано устройство, под названием тепловой насос. Он позволяет перенести низкотемпературную тепловую энергию из воздуха, выбрасываемого вентиляционной системой, к системе потребления, но уже с более высокой температурой. В качестве потребителя используется система отопления или горячего водоснабжения.

Как это работает

Принцип действия теплового насоса основан на цикле Карно, который большинство из нас изучали в средней школе на уроках физики. Рассмотрим обобщенную схему прибора.

  • Система представляет собой замкнутый трубопровод, в котором находится фреон. Контур оснащен компрессором, приводящим в движение газ, и расширительным клапаном. Это устройство предназначено для создания высокого давления фреона. При этом вступает в силу важнейший физический закон — при сжимании газ нагревается, а при понижении давления остывает.
  • На участке выхода фреона из компрессора, газ сжат и благодаря чему имеет высокую температуру, а проходя через расширительный клапан, происходит резкая потеря давления и газ теряет свою температуру. В замкнутом фреоновом контуре, кроме компрессора и клапана есть еще и два теплообменника. Один находится сразу после компрессора в системе высокого давления газа, а второй устанавливается после дросселирующего устройства.
  • Протекая по теплообменнику, фреон отдает часть своей тепловой энергии теплообменнику системы отопления, после чего газ остывает и поглощает тепло воздуха, протекающего по системе вентиляции. Принцип работы теплового насоса очень напоминает принцип работы холодильника.
  • В качестве отопительных приборов могут выступать радиаторы отопления, фанкойлы, теплые полы. Такое устройство называется воздух — вода.

Вместо отопительного контура может выступать приточная вентиляция, поступающий воздух будет нагреваться от конденсаторного теплообменника. Устройство, которое будет работать по такой схеме, называется тепловой насос воздух-воздух.

Область применения

Основное системы это отопление, причем как квартир и частных домов, так и промышленных помещений. Но тепловой насос не только обогревает помещения, он может их и охлаждать, экономя при этом средства на кондиционировании. Для этого потребуется только подключить вместо радиаторов отопления фанкойлы.

В Европе, такой вид утилизации тепла достаточно давно пользуется популярностью. Многие владельцы жилья по достоинству оценили экономию средств от использования тепловых насосов для отопления и горячего водоснабжения своих жилищ. Стоит только представить, что на отопление частного дома площадью около 100 м.кв. будет расходоваться менее 2 кВт электроэнергии, а это меньше чем потребляет обычный электрочайник. Кроме частных домов, тепловые насосы применяются:

  • Для отопления и кондиционирования офисных помещений. Если площадь помещения более 1500 м.кв, то используется принцип каскадного подключения нескольких тепловых насосов.
  • Для создания комфортного микроклимата в складских помещениях тепловой насос затратит в 10 раз меньше энергии, чем при электрическом отоплении.
  • Для обогрева воды в бассейнах.
  • Для отопления теплиц и парников.

Многие сторонники применения тепловых насосов заявляют, что КПД системы более 100%, при этом приводят в качестве примера, что на 1 кВт затраченной энергии, это устройство отдает 2,5 кВт тепловой мощности в помещение, называя полученный эффект «энергетическим чудом». Расчеты верны, но те, кто заявляет о чудесах, путают КПД с тепловым коэффициентом. На самом деле, коэффициент полезного действия устройства равен 46%. Но и такие показатели гораздо выше, чем у электрического или печного отопления.

Как рассчитать мощность оборудования

Совет:
Ввиду того, что тепловой насос является достаточно дорогостоящим оборудованием, то правильный расчет мощности позволит значительно сократить расходы, связанные с его приобретением, монтажом и дальнейшей эксплуатацией. В связи с этим все расчеты лучше всего доверить профессионалам.

Для того, чтобы самостоятельно произвести расчет теплового насоса, требуется определить все теплопотери по каждому помещению. Основные потери тепла происходят:

  • Из-за разницы температур между помещением и улицей через стены.
  • Через естественные неплотности в окнах и дверях.
  • Через вентиляционную систему.

Чтобы не утомлять вас сложными вычислениями и ненужными расчетами, в среднем, теплопотери жилого помещения составляют от 60 до 100 Вт. В качестве примера можно взять небольшой частный дом, общая площадь помещений которого будет равна 150 м.кв. Тогда при теплопотерях в 60 Вт на их покрытие потребуется мощность аппарата в 9 кВт. Но нужно сюда прибавить около 700 Вт на обогрев воды в системе отопления. В итоге получается, что на коттедж, общей площадью в 150 м.кв. потребуется устройство, мощностью 9,7 кВт.

Изготавливаем аппарат своими руками

Прочитав эту статью многие уже решив для себя «прикупить по случаю» тепловой насос и свести к нулю свои затраты на отопление и кондиционирование, с удивлением обнаружили, что стоимость этого оборудования как минимум шестизначная. Именно поэтому те, кто после такой информации не потерял энтузиазма и пытаются сделать такой прибор самостоятельно.

Для изготовления вам понадобятся основные узлы, включающие в себя:

  1. Компрессор для теплового насоса.
  2. Испарительный теплообменник.
  3. Конденсаторный теплообменник.
  4. Дросселирующее устройство.
  5. Медный трубопровод.

Прежде всего, следует выбрать месторасположение компрессора и само устройство. Его лучше всего взять от кондиционера. Компрессор при помощи кронштейнов нужно зафиксировать на стене.

  1. Следует изготовить конденсаторный теплообменник. Для его изготовления потребуется бак, изготовленный из нержавейки. Объем бака приблизительно 100-130л. В него следует вставить змеевик и заварить горловину. Выходы змеевика вывести из бака при помощи резьбовых соединений. Кто хоть раз изготавливал самостоятельно змеевик для самогонного аппарата, тому будет проще, конструкция практически одинаковая.
  2. На готовый конденсатор нужно намотать медную трубу и тщательно ее зафиксировать. Концы трубы вывести при помощи сгонов.

    Важно!
    Выводы внутреннего змеевика (для фреона) следует делать: вход в верхней части конденсатора, а выход в нижней, для предотвращения образования воздушных пробок.

  3. В качестве испарителя подойдет пластиковая бочка на 100 л. Ее необходимо закрепить на стене при помощи кронштейнов.
  4. Дросселирующее устройство следует приобрести с учетом особенностей конструкции и диаметров трубопровода.
  5. В качестве соединительных труб для водяного контура можно использовать обычные сантехнические трубы ПВХ с уплотнителями.
  6. Пайка фреонового контура и заправка его газом должна осуществляться профессионалами.

После проведения всех мероприятий изготовление теплового насоса своими руками подошло к концу.

Совет!
Для того чтобы изготовить оборудование своими руками требуются глубокие познания в физике. Если вы ознакомились с устройством и принципом работы только на основе одной статьи, то не рискуйте, так как разгерметизация прибора может привести к тяжелым травмам.

Область применения этих климатических аппаратов очень велика. На сегодняшний день это один из самых экономически выгодных, экологически чистых и безопасных способов организации отопления в жилых, административных и производственных помещениях.

Как сделать тепловой насос своими руками

Экология познания. Усадьба: В последние десятилетия у владельцев домов появился довольно большой выбор систем отопления. Уже необязательно подключаться к централизованным сетям и использовать традиционные источники. Можно выбрать оборудование, работающее на альтернативной энергии, но его главный недостаток – дороговизна. Впрочем, если сделать тепловой насос своими руками из старого холодильника, систему можно существенно удешевить.

Сегодня мало кто сомневается в том, что тепловой насос для отопления дома – самое эффективное средство из всех существующих. Оно же — самое дорогое и сложное в исполнении. По этой причине многие домашние умельцы взялись за самостоятельное решение данной проблемы.

Но ввиду ее высокой сложности достижение положительных результатов дается весьма непросто, нужно иметь энтузиазм, терпение и вдобавок хорошо изучить теорию. Наша статья для тех, кто делает первый шаг на пути внедрения у себя дома такого альтернативного источника энергии, как тепловой насос, сделанный своими руками.

Примером могут служить домашние холодильники и кондиционеры, чья конструкция основана на так называемом цикле Карно, его же использует принцип работы теплового насоса для отопления или ГВС. Суть этого цикла заключается в движении вещества (рабочего тела) по замкнутой системе и меняющего свое агрегатное состояние с жидкого на газообразное и наоборот. В момент перехода выделяется или поглощается огромное количество энергии.

Чтобы пояснить на более доступном языке, перечислим основные элементы, которые включает в себя устройство теплового насоса:

  • компрессор;
  • теплообменник, где рабочее тело переходит в газообразное состояние (испаритель);
  • теплообменник, в котором рабочее тело конденсируется (конденсатор);
  • расширительный (редукционный) клапан;
  • средства управления и автоматики;
  • магистрали из медных трубок.

В качестве рабочего тела выступает вещество, закипающее при низких температурах – фреон. Циркулируя по трубке в виде жидкости, первым делом он попадает в испаритель. После взаимодействия с теплоносителем от внешнего источника (воздух, вода, грунт) рабочее тело испаряется и продолжает свое движение в виде газа. На этом участке давление в системе — низкое. Всю цепочку цикла отражает принципиальная схема теплового насоса:

Пройдя компрессор, фреон под давлением движется ко второму теплообменнику, где ему предстоит сконденсироваться и передать полученное тепло воде, снова приняв жидкое состояние. Далее, рабочее тело попадает в расширительный клапан, давление снова падает и оно продолжает свой путь к испарению. Цикл завершен.

Заводские теплонасосы для жилого дома способны выдавать теплоноситель с температурой 55—60 ºС, этого достаточно для обогрева помещений радиаторами либо теплыми полами. При этом вся система отопления затрачивает электроэнергию на такие цели:

  • питание компрессора;
  • вращение роторов циркуляционных насосов наружного и внутреннего контура;
  • питание средств автоматики и контроля.

Получается, что при потреблении 1 кВт электричества действие теплового насоса может переместить в дом до 5 кВт тепловой энергии извне, отсюда и небылицы о КПД 500%.

Тепловой насос воздух-воздух

Теоретически любая среда, имеющая температуру выше абсолютного нуля (минус 273 ºС), обладает запасом тепловой энергии. А значит, ее можно извлечь, уж тем более это нетрудно сделать при температуре окружающего воздуха минус 10—30 ºС.

Для этой цели служит тепловой насос воздух-воздух, отнимающий тепло у наружной окружающей среды и перемещающий его внутрь частного дома. Это самый доступный способ по цене оборудования и стоимости монтажа, он же – наименее эффективный. Чем крепче мороз на улице, тем меньше тепла удается получить. Принцип действия системы показан на рисунке:

Наружный блок воздушного теплового насоса внешне похож на такой же агрегат сплит-системы, только внутри у него нет компрессора. Остается лишь пластинчатый теплообменник и вентилятор, чьей задачей является повысить интенсивность процесса путем нагнетания через пластины большого количества воздуха.

Тепловой насос вода-вода

Более эффективным вариантом считается тепловой насос вода-вода. Он извлекает тепловую энергию из ближайшего водоема, если таковой есть на расстоянии до 100 м от дома. Другой, более распространенный способ – отбор тепла у грунтовых вод через скважину. По сути, скважин нужно 2: одна для выкачивания воды, другая – для ее сброса. Ниже представлены схемы тепловых насосов, действующих по такому принципу:

Здесь есть свои нюансы. Вода из скважины должна проходить очистку перед попаданием теплообменник, а трубы надо прокладывать ниже глубины промерзания грунта. Другое дело – контур на дне водоема, он заполняется незамерзающей жидкостью (пропиленгликолем), что служит посредником между водой и хладагентом.

Способность обеспечить частный дом тепловой энергией в этом случае зависит от производительности скважины и объема воды в пруде. Также существуют варианты погружения внешнего контура в проточную воду реки или канализационный септик.

Также существуют геотермальные тепловые насосы, чей принцип работы не отличается от предыдущих типов аппаратов, только тепло извлекается из грунта на глубине, где температура всегда одинакова – плюс 7 ºС. Для этого в землю закапывается горизонтальный контур из труб, занимающий большую площадь, либо в скважины глубиной 25 м опускаются геотермальные зонды. В обоих случаях в качестве теплоносителя используется антифриз.

Считается, что работа теплового насоса, добывающего тепло из грунта, — самая стабильная и эффективная. Но покупка и монтаж подобного оборудования очень дороги, а домашние мастера-умельцы редко прибегают к реализации этого варианта.

Как собрать тепловой насос в домашних условиях?

Поскольку термодинамический расчет теплового насоса представляет для большинства домашних мастеров — самодельщиков немалую сложность, приводить его здесь мы не будем. Наша задача – представить несколько действующих моделей, чтобы любой энтузиаст мог взять какую-нибудь из них за основу для создания собственного детища.

Необходимо отметить, что тепловой насос, придуманный и собранный своими руками, для подавляющего большинства рядовых пользователей останется недостижимой мечтой, если не приложить к его изготовлению массу усилий и времени.

Простейший тепловой насос из старого холодильника был описан в статье журнала «Инженер» за 2006 г. Он позиционируется, как нагреватель воздух – воздух для небольшого помещения или теплицы. Кстати, какой бы ни был мощный бытовой холодильник, на обогрев даже небольшого дома его не хватит, а вот на 1 комнатку – вполне. Решение реализуется 2 способами, причем внутренняя автоматика отключения демонтируется и все агрегаты соединяются напрямую для непрерывной работы. В первом случае старый холодильник находится в помещении, конструкция насоса показана на схеме:

Снаружи к нему прокладывается 2 воздуховода и врезается в переднюю дверку. Воздух по верхнему каналу попадает в морозилку, охлаждается и опускается к нижнему воздуховоду из-за увеличения плотности. Затем он покидает корпус холодильника, вытесняемый верхним потоком. Помещение прогревается от теплообменника, расположенного на задней стенке агрегата. По второму способу сделать своими руками тепловой насос так же просто, надо лишь встроить холодильник в наружную стену, как изображено на схеме:

Самодельный обогреватель из холодильника может функционировать до наружной температуры минус 5 ºС, не ниже.

Тепловой насос из кондиционера

Современные сплит-системы, особенно инверторного типа, успешно выполняют функции того же теплового насоса воздух – воздух. Их проблема в том, что эффективность работы падает вместе с наружной температурой, не спасает даже так называемый зимний комплект.

Домашние умельцы подошли к вопросу иначе: собрали самодельный тепловой насос из кондиционера, отбирающий теплоту проточной воды из скважины. По сути, от кондиционера тут используется только компрессор, иногда – внутренний блок, играющий роль фанкойла.

По большому счету, компрессор можно приобрести отдельно. К нему потребуется сделать теплообменник для нагрева воды (конденсатор). Медная трубка с толщиной стенки 1—1.2 мм длиной 35 м наматывается для придания формы змеевика на трубу диаметром 350—400 мм или баллон. После чего витки фиксируются перфорированным уголком, а затем вся конструкция помещается в стальную емкость с патрубками для воды.

Компрессор из сплит-системы присоединяется к нижнему вводу в конденсатор, а к верхнему подключается регулирующий клапан. Таким же образом изготавливается испаритель, для него сгодится обычная пластиковая бочка. Кстати, вместо самодельных емкостных теплообменников можно использовать заводские пластинчатые, но это обойдется недешево.

Сама по себе сборка насоса не слишком сложна, но здесь важно уметь правильно и качественно пропаивать соединения медных трубок. Также для заправки системы фреоном потребуются услуги мастера, не станете же вы специально покупать дополнительное оборудование. Дальше – этап наладки и пуска теплового насоса, который далеко не всегда проходит удачно. Возможно, придется немало повозиться, чтобы добиться результата.

Заключение

Конечно, отопление дома тепловым насосом – мечта многих домовладельцев. К сожалению, стоимость установок слишком высокая, а справиться с собственноручным изготовлением могут единицы. И то зачастую мощности хватает лишь на ГВС, об отоплении речь не идет. Если бы все было так просто, то у нас в каждом доме стоял самодельный тепловой насос, а пока что он остается недоступным широкому кругу пользователей.

опубликовано econet.ru Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .

Что такое тепловой насос и как он работает?

Под термином тепловой насос понимается набор определенного оборудования. Основной функцией этого оборудования является сбор тепловой энергии и ее транспортировка к потребителю. Источником такой энергии может стать любое тело или среда, обладающая температурой от +1º и более градусов.

В окружающей нас среде источников низкотемпературного тепла более чем достаточно. Это промышленные отходы предприятий, тепловых и атомных электростанций, канализационные стоки и пр. Для работы тепловых насосов в сфере отопления дома нужны три самостоятельно восстанавливающихся природных источника – воздух, вода, земля.

Тепловые насосы “черпают” энергию из процессов, регулярно происходящих в окружающей среде. Течение процессов никогда не прекращается, потому источники признаны неисчерпаемыми по человеческим критериям

Три перечисленных потенциальных поставщика энергии напрямую связаны с энергией солнца, которое путем нагревания приводит в движение воздух с ветром и сообщает тепловую энергию земле. Именно выбор источника является основными критерием, согласно которому классифицируют тепловые насосные системы.

Принцип действия тепловых насосов базируется на способности тел или сред передавать тепловую энергию другому телу или среде. Получатели и поставщики энергии в тепловых насосных системах работают обычно в паре.

Так различают следующие виды тепловых насосов:

  • Воздух – вода.
  • Земля – вода.
  • Вода – воздух.
  • Вода – вода.
  • Земля – воздух.
  • Вода – вода
  • Воздух – воздух.

При этом первое слово определяет тип среды, у которой система отбирает низкотемпературное тепло. Второе указывает на вид носителя, которому и передается эта тепловая энергия. Так, в тепловых насосах вода – вода, тепло отбирается у водной среды и в качестве теплоносителя используется жидкость.

Тепловые насосы по конструктивному типу являются парокомпрессионными установками. Они извлекают тепло из природных источников, обрабатывают и транспортируют его к потребителям (+)

Современные тепловые насосы используют три основных источника тепловой энергии. Это – грунт, вода и воздушная среда. Самый простой из этих вариантов – воздушный тепловой насос. Популярность таких систем связана с их довольно несложной конструкцией и простотой монтажа.

Галерея изображений Фото изСтандартный принцип устройства теплового насосаВнешний блок теплового насоса воздух-воздухРазновидность тепловой установки воздух-воздухГоризонтальный испаритель системы земля-вода

Устройство теплоприемника насоса земля-воздухИспаритель в выбранных в земле траншеях Водяная скважина для теплового насоса вода-вода Горизонтальные приемники энергии воды

Однако несмотря на такую популярность, эти разновидности имеют довольно низкую производительность. К тому же КПД нестабилен и зависим сезонных колебаний температурного режима.

С понижением температуры их производительность значительно падает. Такие варианты тепловых насосов можно рассматривать как дополнение к имеющемуся основному источнику тепловой энергии.

Варианты оборудования, использующего тепло грунта, считаются более эффективными. Грунт получает и аккумулирует тепловую энергию не только от Солнца, он постоянно подогревается за счет энергии земного ядра.

То есть грунт является своеобразным тепловым аккумулятором, мощность которого, практически, не ограничена. Причем температура грунта, особенно на некоторой глубине, постоянна и колеблется в незначительных пределах.

Сфера применения энергии, вырабатываемой тепловыми насосами:

Галерея изображений Фото из Тепловые насосы в отоплении и горячем водоснабжении Применение в контурах воздушного отопления Подготовка теплоносителя для систем теплый пол Тепловая установка в подогреве воды в бассейне

Постоянство температуры источника является важным фактором стабильной и эффективной работы данного вида энергетического оборудования. Аналогичными характеристиками обладают системы, в которых водная среда является основным источником тепловой энергии. Коллектор таких насосов располагают либо в скважине, где он оказывается в водоносном слое, либо в водоеме.

Среднегодовая температура таких источников, как грунт и вода, варьируется от +7º до + 12º С. Такой температуры вполне достаточно для того, чтобы обеспечить эффективную работу системы.

Наиболее эффективными считаются тепловые насосы, извлекающие тепловую энергию из источников со стабильными температурными показателями, т.е. из воды и грунта

Основные элементы конструкции тепловых насосов

Для того чтобы установка получения энергии работала согласно принципам работы теплового насоса, в его конструкции должны присутствовать 4 основных агрегата, это:

  • Компрессор.
  • Испаритель.
  • Конденсатор.
  • Дроссельный клапан.

Важным элементом конструкции теплового насоса является компрессор. Его основная функция – повышение давления и температуры паров, образующихся в результате кипения хладагента. Для климатической техники и тепловых насосов в частности применяются современные спиральные компрессоры.

В качестве рабочего тела, осуществляющего непосредственный перенос тепловой энергии, используются жидкости с низкой температурой кипения. Как правило, используется аммиак и фреоны (+)

Такие компрессоры рассчитаны на эксплуатацию при минусовых температурах. В отличие от других разновидностей спиральные компрессоры производят мало шума и работают, как при низких температурах кипения газа, так и при высоких температурах конденсации. Несомненным преимуществом считаются их компактные размеры и небольшой удельный вес.

Практически вся энергия теплового насоса затрачивается на транспортировку тепловой энергии извне внутрь помещения. Так на работу систем уходит около 1 энергетической единицы при производстве 4 – 6 единиц (+)

Испаритель как конструктивный элемент представляет собой емкость, в которой происходит превращение в пар жидкого хладагента. Хладагент, циркулируя по замкнутому контуру, проходит через испаритель. В нем хладагент разогревается и превращается в пар. Образующийся пар под низким давлением направляется в сторону компрессора.

В компрессоре пары хладагента подвергаются действию давления и их температура возрастает. Компрессор перекачивает под большим давлением разогретый пар в сторону конденсатора.

Компрессор сжимает циркулирующую по контуру среду, в результате чего увеличивается ее температура и давление. Затем сжатая среда поступает в теплообменник (конденсатор), где охлаждается, передавая тепло воде либо воздуху

Следующий конструктивный элемент системы – конденсатор. Его функция сводится к отдаче тепловой энергии внутреннему контуру отопительной системы.

Серийные образцы, изготавливаемые промышленными предприятиями, оснащаются пластинчатыми теплообменниками. Основным материалом для таких конденсаторов служит легированная сталь или медь.

Для самостоятельного изготовления теплообменника подойдет медная трубка диаметром полдюйма. Толщина стенок труб, используемых для изготовления теплообменника, должна быть не менее 1 мм

Терморегулирующий, или иначе дроссельный, клапан устанавливается в начале той части гидравлического контура, где циркулирующая среда высокого давления преобразуется в среду с низким давлением. Точнее дроссель в паре с компрессором делят контур теплового насоса на две части: одну с высокими параметрами давления, другую – с низкими.

При прохождении через расширительный дроссельный вентиль циркулирующая по замкнутому контуру жидкость частично испаряется, вследствие чего давление вместе с температурой падают. Затем поступает в теплообменник, сообщающийся с окружающей средой. Там захватывает энергию среды и переносит ее обратно в систему.

С помощью дроссельного клапана происходит регулирование потока хладагента в сторону испарителя. При выборе клапана нужно учитывать параметры системы. Клапан должен соответствовать этим параметрам.

При прохождении через теплорегулирующий клапан жидкий теплоноситель частично испаряется, а температура потока понижается (+)

Выбор типа теплового насоса

Основным показателем этой системы обогрева является мощность. От мощности в первую очередь будут зависеть и финансовые затраты на покупку оборудования и выбор того либо иного источника низкотемпературного тепла. Чем выше мощность тепловой насосной системы, тем больше стоимость комплектующих элементов.

В первую очередь имеется в виду мощность компрессора, глубина скважин для геотермических зондов, либо площадь для размещения горизонтального коллектора. Правильные термодинамические расчеты являются своеобразной гарантией того, что система будет эффективно работать.

При наличии рядом с личным участком водоема наиболее рентабельным и производительным выбором станет тепловой насос вода-вода

Для начала следует изучить участок, который планируется для монтажа насоса. Идеальным условием будет наличие на этом участке водоема. Использование варианта типа вода-вода значительно сократит объем земляных работ.

Использование тепла земли напротив предполагает большое количество работ, связанных с выемкой грунта. Системы, которые в качестве низкопотенциального тепла используют водную среду, считаются наиболее эффективными.

Устройство теплового насоса, извлекающего тепловую энергию из грунта, предполагает проведение внушительного количества земляных работ. Закладывается коллектор ниже уровня сезонного промерзания

Использовать тепловую энергию грунта можно двумя способами. Первый предполагает бурение скважин диаметром 100-168 мм. Глубина таких скважин, в зависимости от параметров системы, может достигать 100 м и более.

В эти скважины помещают специальные зонды. При втором способе используется коллектор из труб. Такой коллектор размещается под землей в горизонтальной плоскости. Для этого варианта необходимо достаточно большая площадь.

Для укладки коллектора идеальными считаются участки с влажным грунтом. Естественно, бурение скважин обойдется дороже, нежели горизонтальное расположение коллектора. Однако не на каждом участке есть свободные площади. На один кВт мощности теплового насоса нужно от 30 до 50м² площади.

Сооружение для забора тепловой энергии одной глубокой скважиной может оказаться немногим дешевле рытья котлована. Но веский плюс заключается в существенной экономии места, что важно для владельцев небольших участков

В случае с наличием на участке высоко залегающего горизонта грунтовых вод, теплообменники можно устроить в двух расположенных на расстоянии около 15 м друг от дружки скважинах.

Отбор тепловой энергии в таких системах путем перекачивания грунтовой воды по замкнутому контуру, части которого расположены в скважинах. Такая система нуждается в установке фильтра и периодической чистке теплообменника.

Самая простая и дешевая схема теплового насоса основана на извлечении тепловой энергии из воздуха. Некогда она стала базой для устройства холодильников, позже согласно ее принципам разработаны были кондиционеры.

Самая простая тепловая насосная система получает энергию из воздушной массы. Летом она участвует в отоплении, зимой в кондиционировании. Минус системы в том, что в самостоятельном исполнении агрегат с недостаточной мощностью

Эффективность различных типов данного оборудования не одинакова. Наименьшими показателями обладают насосы, использующие воздушную среду. К тому же эти показатели напрямую зависят от погодных условий.

Грунтовые разновидности тепловых насосов имеют стабильные показатели. Коэффициент эффективности данных систем варьируется в пределах 2,8 -3,3. Наибольшей эффективность обладают системы вода-вода. Это связано, в первую очередь, со стабильностью температуры источника.

Надо заметить, что чем глубже расположен в водоеме коллектор насоса, тем стабильнее будет температура. Для получения мощности системы в 10КВт, необходимо около 300 метров трубопровода.

Основным параметром, характеризующим эффективность работы теплового насоса, считается его коэффициент преобразования. Чем выше коэффициент преобразования, тем эффективнее считается тепловой насос.

Коэффициент преобразования теплового насоса выражается через отношение показателей теплового потока и электрической мощности, затраченной на работу компрессора

Сборка теплового насоса своими силами

Зная схему действия и устройство теплового насоса, собрать и смонтировать самостоятельно систему альтернативного отопления вполне возможно. Перед началом работ необходимо рассчитать все основные параметры будущей системы. Для расчета параметров будущего насоса можно воспользоваться программным обеспечением , предназначенным для оптимизации систем охлаждения.

Наиболее простым в сооружении вариантом является система воздух-вода. Она не требует сложных работ по устройству внешнего контура, который присущ водным и грунтовым разновидностям тепловых насосов. Для монтажа понадобятся лишь два канала, по одному из которых будет подаваться воздух, по второму отводиться отработанная масса.

Проще всего своими руками устроить тепловой насос с забором тепла из воздушной массы. Установленный на улице вентилятор нагнетает воздух к испарителю

Кроме вентилятора необходимо обзавестись компрессором нужной мощности. Для такого агрегата вполне подойдет компрессор, которым оснащаются обычные сплит-системы. Необязательно покупать новый агрегат.

Можно снять его со старого оборудования или использовать комплектующие старого холодильника. Желательно применять спиральную разновидность. Эти варианты компрессоров помимо обладания достаточной эффективностью создают высокое давление, обеспечивающее повышение температуры.

Для устройства конденсатора понадобится емкость и медная труба. Из трубы делается змеевик. Для его изготовления используется любое цилиндрическое тело нужного диаметра. Намотав на него медную трубу можно легко и быстро изготовить этот элемент конструкции.

Готовый змеевик монтируется в предварительно разрезанную пополам емкость. Для изготовления емкости лучше использовать материалы, стойкие к коррозионным процессам. После помещения в него змеевика, половинки бака свариваются.

Площадь змеевика рассчитывается по следующей формуле:

МТ/0,8 РТ,

где:

  • МТ – мощность тепловой энергии, которая выдает система.
  • 0,8 – коэффициент теплопроводности при взаимодействии воды с материалом змеевика.
  • РТ – разница температур воды на входе и на выходе.

Выбирая медную трубу для самостоятельного изготовления змеевика, нужно обратить внимание на толщину стенок. Она должна быть не менее 1 мм. В противном случае при намотке труба будет деформироваться. Трубу, по которой осуществляется вход хладагента, располагают в верхней части емкости.

Теплообменник из медной трубки изготавливается путем навивание медной трубки на предмет с цилиндрической формой. Чем больше площадь поверхности змеевика, тем выше производительность насоса

Испаритель теплового насоса можно выполнить в двух вариантах – в виде емкости с находящимся в ней змеевиком и в виде трубы в трубе. Поскольку, температура жидкости в испарителе небольшая, емкость можно выполнить из пластиковой бочки. В эту емкость помещается контур, который выполняется из медной трубы.

В отличие от конденсатора, спираль змеевика испарителя должна соответствовать диаметру и высоте выбранной емкости. Второй вариант испарителя: труба в трубе. В таком варианте трубка с хладагентом размещается в пластиковой трубе большего диаметра, по которой циркулирует вода.

Длина такой трубы зависит от планируемой мощности насоса. Она может быть от 25 до 40 метров. Такую трубу сворачивают в спираль.

Терморегулирующий клапан относится к запорно-регулирующей трубопроводной арматуре. В качестве запорного элемента в ТРВ используется игла. Положение запорного элемента клапана обуславливается температурой в испарителе.

Это важный элемент системы имеет довольно сложную конструкцию. В ее состав входят:

  • Термоэлемент.
  • Диафрагма.
  • Капиллярная трубка.
  • Термобаллон.

Эти элементы могут прийти в негодность при высокой температуре. Поэтому во время работ по пайке системы клапан следует изолировать при помощи асбестовой ткани. Регулирующий клапан должен соответствовать производительности испарителя.

После проведения работ по изготовлению основных конструкционных частей наступает ответственный момент сборки всей конструкции в единый блок. Наиболее ответственным этапом является процесс закачки хладагента или теплоносителя в систему.

Самостоятельное проведение подобной операции вряд ли по силам простому обывателю. Тут придется обратиться к профессионалам, которые занимаются ремонтом и обслуживанием климатического оборудования.

У работников этой сферы, как правило, имеется необходимое оборудование. Помимо заправки хладагента они могут протестировать работу системы. Самостоятельная закачка хладагента может привести не только к поломке конструкции, но и к тяжелым травмам. Кроме того, для запуска системы так же необходимо специальное оборудование.

При запуске системы происходит пиковая пусковая нагрузка, составляющая, как правило, около 40 А. Поэтому запуск системы без пускового реле невозможен. После первого пуска необходима регулировка клапана и давления хладагента.

К выбору хладагента стоит отнестись со всей серьезностью. Ведь именно это вещество по сути считается основным “переносчиком” полезной тепловой энергии. Из существующих современных хладагентов наибольшей популярностью пользуются фреоны. Это производные углеводородных соединений, в которых часть атомов углерода замещается на другие элементы.

В результате сборки отдельных элементов теплового насоса должен получиться замкнутый контур, по которому циркулирует рабочая среда

В результате проведения этих работ получилась система с замкнутым контуром. В нем будет циркулировать хладагент, обеспечивая отбор и перенос тепловой энергии от испарителя к конденсатору. При подключении тепловых насосов к системе теплоснабжения дома следует учитывать, что температура воды на выходе из конденсатора не превышает 50 – 60 градусов.

В связи небольшой температурой тепловой энергии, вырабатываемой тепловым насосом, в качестве потребителя тепла нужно выбирать специализированные приборы отопления. Это может быть теплый пол или же объемные низко-инерционные радиаторы из алюминия или стали с большой площадью излучения.

Самодельные варианты тепловых насосов наиболее уместно рассматривать в качестве вспомогательного оборудования, которое поддерживает и дополняет работу основного источника.

С каждым годом конструкции тепловых насосов совершенствуются. В промышленных образцах, предназначенных для бытового использования, используются более эффективные теплопередающие поверхности. В результате производительность систем постоянно растет.

Немаловажным фактором, который стимулирует развитие подобной технологии производства тепловой энергии, является экологическая составляющая. Подобные системы помимо того, что являются довольно эффективными, не загрязняют окружающую среду. Отсутствие открытого пламени делает его работу абсолютно безопасной.

This entry was posted in Ремонт. Bookmark the <a href="https://kabel-house.ru/remont/teplovoj-nasos-iz-holodilnika/" title="Permalink to Тепловой насос из холодильника" rel="bookmark">permalink</a>.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *