Теплообменник труба в трубе

Конструкционные особенности

Данную группу аппаратов относят к поверхностным тепловым приборам. Устройство теплообменника труба в трубе не отличается особой сложностью. Чаще всего в состав теплообменника входит несколько элементов: их располагают друг над другом, соединяя между собой специальным креплением. В состав каждого отдельного звена входят вставленные друг в друга трубы, предназначенные для теплообмена между собой. Внешнюю трубу большего диаметра соединяют с аналогичными элементами соседних отделений.

Это же касается и расположенных внутри труб меньшего диаметра: для них также применяется последовательное соединение. Для обеспечения возможности регулярных чисток на всех соединениях устанавливаются разъемы. Внутренние трубы в основном соединяют съемными калачами. За счет маленького поперечного сечения внутри системы достигается высокая скорость перемещения теплоносителя по трубам и между ними.

Если теплообмен требуется для теплоносителя в больших объемах, конструкцию аппарата дополняют несколькими добавочными секциями, для объединения которых предусмотрены общие коллекторы.

Достоинства теплообменника

Простая схема теплообменника труба в трубе не является помехой для его значительной популярности. Что касается обслуживания, то простота устройства дает возможность проводить его самостоятельно, без привлечения сантехников.

К основным преимуществам аппаратов данного типа можно отнести следующее:

  1. Оптимальная скорость транспортировки теплоносителя. Это достигается благодаря тщательному подбору водопроводных труб необходимого диаметра: это дает возможность раствору двигаться внутри системы беспрепятственно.
  2. Простота изготовления и ухода. Это позволяет без проблем проводить регулярную чистку устройства, позитивно влияющую на продолжительность его службы.
  3. Универсальность. Данное свойство теплообменника позволяет использовать не только жидкий, но также парообразный теплоноситель. Как результат, аппарат с успехом может применяться в самых разных системах.

К недостаткам оборудования обычно относят такие моменты:

  • Большие размеры. Это накладывает свой отпечаток как на транспортировку, так и эксплуатацию прибора. Особенно это касается приватного использования, т.к. дополнительное пространство на установку аппарата найти не всегда просто.
  • Дороговизна. Стоимость наружных труб, не занятых в теплообмене, а также труб, которыми оснащается грунтовый теплообменник (если они имеются в общей конструкции) довольно значительна.
  • Сложность проектирования. Данная процедура по силам разве что профессионалам, так как требует проведения сложных вычислений и знания точных параметров системы. Как результат, общая стоимость монтажных работ увеличивается.

Несмотря на имеющиеся недостатки теплообменников труба в трубе, положительные стороны это успешно компенсируют: это объясняет большую популярность данных аппаратов не только в промышленных сферах, но и частных домовладениях.

Особенности проектировки

Во время проведения расчетных мероприятий теплообменника труба в трубе нужно подобрать наиболее оптимальный материал, из которого он будет изготовлен. Кроме того, на этом этапе определяют основные параметры конструкции. Хотя ниже и будут рассмотрены основные моменты проектировки аппаратов данной группы, однако самостоятельное проведение подобных работ не рекомендуется. Читайте также: «Как сделать теплообменник на трубу дымохода – варианты конструкции и способы монтажа».

Лучше всего, если этим займутся специалисты по теплотехнике. Так как для целого ряда теплоносителей характерна повышенная коррозийная активность, основные элементы теплообменника стараются изготовлять из нержавеющей стали. Этим также обеспечивается максимально возможная продолжительность службы аппарата. При использовании для изготовления другого материала потребуется проведение тщательного анализа особенностей эксплуатации теплообменника.

Чтобы рассчитать габариты основных секций теплообменника труба в трубе, потребуется информация о следующих параметрах:

  • Средний показатель разницы температур теплоносителей.
  • Тепловая нагруженность прибора.
  • Коэффициент теплоотдачи, происходящей между стенками аппарата и теплоносителем.
  • Показатель теплового сопротивления стенок теплообменника.
  • Площадь расчетной поверхности, вдоль которой осуществляется теплообмен.

Теплотехнические характеристики потребуется дополнить еще некоторыми расчетами. В первую очередь это касается гидравлических параметров, которыми обладает аппарат. Принцип работы теплообменника труба в трубе во многом зависит и от того, какая механическая нагрузка оказывается на металлические трубы системы отопления. Что касается коэффициентов теплообмена труб, то они напрямую зависят от рабочих сред, с которыми взаимодействуют: их знание позволит самостоятельно рассчитать теплообменную систему.

Несложная конструкция теплообменника труба в трубе содействует значительной распространенности аппаратов данного типа. Главное, чтобы большие габариты системы не являлись помехой в установке и последующей ее эксплуатации.

Теплообменник

Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей.

Простейший теплообменник типа «труба в трубе»Теплообменник для газовой промышленности Слово «Теплообменник» имеет и другие значения.

Теплообменник — техническое устройство, в котором осуществляется теплообмен между двумя средами, имеющими различные температуры.

По принципу действия теплообменники подразделяются на рекуператоры и регенераторы. В рекуператорах движущиеся теплоносители разделены стенкой. К этому типу относится большинство теплообменников различных конструкций. В регенеративных теплообменниках горячий и холодный теплоносители контактируют с одной и той же поверхностью поочерёдно. Теплота накапливается в стенке при контакте с горячим теплоносителем и отдаётся при контакте с холодным, как, например, в кауперах доменных печей.

Теплообменники применяются в технологических процессах нефтеперерабатывающей, нефтехимической, химической, атомной, холодильной, газовой и других отраслях промышленности, в энергетике и коммунальном хозяйстве.

От условий применения зависит конструкция теплообменника. Существуют аппараты, в которых одновременно с теплообменом протекают и смежные процессы, такие как фазовые превращения, например, конденсация, испарение, смешение. Такие аппараты имеют свои наименования: конденсаторы, испарители, градирни, конденсаторы смешения.

В зависимости от направления движения теплоносителей рекуперативные теплообменники могут быть прямоточными при параллельном движении в одном направлении, противоточными при параллельном встречном движении, а также при взаимно поперечном движении двух взаимодействующих сред.

Конструкции теплообменников

Основные виды рекуперативных теплообменников.

  • Кожухотрубные теплообменники. К корпусу, кожуху по торцам приварены трубные решетки, в которых закреплены пучки труб. В основном трубы в решетках крепятся с уплотнением развальцовкой или каким-то другим способом в зависимости от материала труб и давления в аппарате. Трубные решетки закрываются крышками на прокладках и болтах или шпильках. На корпусе имеются патрубки (штуцера), через которые один теплоноситель проходит через межтрубное пространство. Второй теплоноситель через патрубки (штуцера) на крышках проходит по трубам. В многоходовом теплообменнике в корпусе и крышках установлены перегородки для повышения скорости теплоносителей. Для увеличения теплоотдачи применяют оребрение теплообменных труб, которое выполняется или накаткой, или навивкой ленты. В случае необходимости, конструкция аппарата должна предусматривать его очистку.
  • Элементные теплообменники. Каждый элемент такого аппарата представляет собой простейший кожухотрубный теплообменник без перегородок. Такие аппараты допускают при этом более высокое давление. Однако такая конструкция получается более громоздкой и тяжёлой, чем кожухотрубный аппарат.
  • Погружные теплообменники. В погружном змеевиковом теплообменнике один теплоноситель движется по змеевику, погруженному в бак с другим жидким теплоносителем. Скорость жидкости в межтрубном пространстве незначительна и, следовательно, теплоотдача от жидкости сравнительно невелика. Такие теплообменники находят применение благодаря своей простоте и дешевизне в небольших установках.
  • Теплообменники типа «труба в трубе». Теплообменный элемент такого аппарата показан на рисунке. Отдельные элементы соединены между собой патрубками и калачами, образуя цельный аппарат необходимого размера. Эти теплообменники находят себе применение при небольших расходах теплоносителей и при высоких давлениях.
  • Оросительные теплообменники. Такой тип теплообменников применяется главным образом в качестве конденсаторов в холодильных установок. Оросительный теплообменник представляет собой змеевик из горизонтальных труб, размещённых в вертикальной плоскости в виде ряда параллельных секций. Над каждым рядом находится жёлоб, из которого струйками стекает охлаждающая вода на теплообменные тубы, омывая их наружную поверхность. При этом часть охлаждающей воды испаряется. Оставшаяся вода возвращается насосом, а потери компенсируются из водопровода. Эти теплообменники устанавливаются на открытом воздухе и ограждаются деревянными решетками, чтобы уменьшить унос воды.
  • Графитовые теплообменники. Теплообменники для химически агрессивных сред изготовляют из блоков графита, который пропитывают специальными смолами для устранения пористости. Графит отличается хорошей теплопроводностью. В блоках просверливают каналы для теплоносителей. Блоки уплотняются между собой прокладками из резины или тефлона и стягиваются крышками со стяжками.
  • Теплообменники пластинчатые. Такие теплообменники состоят из набора пластин, в которых отштампованы волнистые поверхности и каналы для протока жидкости. Пластины уплотняются между собой резиновыми прокладками и стяжками. Такой теплообменник прост в изготовлении, легко модифицируется (добавляются или убираются пластины), его легко чистить, у него высокий коэффициент теплопередачи, но его нельзя применять при высоких давлениях.
  • Пластинчато-ребристый теплообменник. Теплообменник такого типа в отличие от пластинчатого теплообменника состоит из системы разделительных пластин, между которыми находятся ребристые поверхности — насадки, присоединенные к пластинам методом пайки в вакууме. С боков каналы ограничиваются брусками, поддерживающими пластины и образующие закрытые каналы. Таким образом, в основу оребренного пластинчатого теплообменника положена жесткая и прочная цельнопаянная теплообменная матрица, построенная по сотовому принципу и работоспособная (даже в исполнении из алюминиевых сплавов) до давления 100 атм. и выше. В пластинчато-ребристых теплообменниках существует большое количество насадок, что позволяет подбирать геометрию каналов со стороны каждого из потоков, реализовывая оптимальную конструкцию. Основные достоинства данного типа теплообменников — компактность (до 4000 м²/м³) и легкость. Последнее обеспечивается за счет применения при изготовлении теплообменной матрицы пакета из тонколистовых деталей из легких алюминиевых сплавов.
  • Оребрённо-пластинчатые теплообменники. Такой теплообменник состоит из тонкостенных оребренных панелей, изготовленных методом высокочастотной сварки, соединенные поочередно с поворотом на 90 градусов. За счет конструкции, а также многообразия используемых материалов достигаются высокие температуры теплоносителей, небольшие гидравлические сопротивления, высокие показатели отношения телепередающей площади к массе теплообменника, длительный срок службы, низкая стоимость и др. Часто используются для утилизации тепла отходящих газов.
  • Теплообменники спиральные. Теплообменник представляет собой два спиральных канала, навитых из рулонного материала вокруг центральной разделительной перегородки — керна, среды движутся по каналам. Одно из назначений спиральных теплообменников —нагревание и охлаждение высоковязких жидкостей.

При выборе между пластинчатыми и кожухотрубными теплообменниками предпочтительными являются пластинчатые, коэффициент теплопередачи которых более чем в три раза больше, чем у традиционных кожухотрубных. При этом для решения одной и той же задачи по нагреву среды кожухотрубный теплообменник будет занимать площадь в 3-4 раза больше чем сравнимый по эффективности пластинчатый теплообменник или в 6-10 раз больше чем сравнимый по эффективности геликоидный теплообменник. В то же время иностранные пластинчатые теплообменники, оснащённые средствами автоматики, регулирования и надёжной арматурой, позволяют снизить количество теплоносителя, идущего на нагрев воды. А значит, и диаметры трубопроводов и запорно-регулирующей арматуры, снизить нагрузки на сетевые насосы и, соответственно, уменьшить потребление электроэнергии. В последнее время стали появляться современные отечественные геликоидные теплообменники, оснащенные трубками, профилированными таким образом, чтобы рост гидравлического сопротивления превышал рост теплоотдачи вследствие применения турбулизаторов потока. Это достигается накаткой на внешней поверхности трубы кольцевых или винтообразных канавок, вследствие образования которых на внутренней поверхности трубы образуются плавно очерченные выступы небольшой высоты, интенсифицирующие теплоотдачу в трубах. Данная технология, в дополнение к таким важным показателям как высокая надежность (также при гидравлическом ударе) и меньшая стоимость, дает отечественному теплообменному оборудованию дополнительные преимущества по сравнению с иностранными пластинчатыми аналогами. Серьёзной проблемой является коррозия теплообменников. Для защиты от коррозии применяется газотермическое напыление трубных досок, труб пароперегревателей. Это относится не только к кожухотрубным теплообменникам, изготовленным из углеродистой стали. Геликоидные теплообменники и пластины пластинчатых теплообменников в подавляющем большинстве изготавливаются из коррозионно-стойкой жаропрочной стали, но несмотря на это, также подвержены питтинговой коррозии при использовании неингибированных теплоносителей.

Как функционирует теплообменник труба в трубе

Данное устройство используется, чтобы охладить или нагреть теплоноситель при необходимости. Он работает только на небольших площадях и умеренных поверхностях теплообмена – не более 50 квадратных метров.

Повышение или понижение температуры таким способом ограничено. Однако при особом и верном расчете можно достичь отметки кипения или конденсации теплоносителя (последнее, однако, сложнее). Иногда возникает потребность добиться желаемого изменения температуры на большем участке. Увеличить площадь теплообмена в таком случае можно, но для этого понадобится встроить в конструкцию дополнительные секции.

Для длительной службы теплообменника типа труба в трубе его необходимо регулярно очищать. Для этого необходимо правильно выбрать и умело присоединить выходные и входные патрубки. В этом случае чистить конструкцию будет удобно со всех сторон, а тепловой обменник будет работать более эффективно, распределяя потоки равномерно по каждому из каналов. Особенно важно правильное присоединение патрубков для охлаждающих устройств, понижение температуры в которых недопустимо.

Правильно собранное устройство работает просто: пара теплоносителей отделена друг от друга перегородкой, через которую осуществляется теплообмен. Так как они расположены рядом, «бок о бок», легко добиться оптимальной компактности устройства.

В процессе работы внутри устройства происходит следующее. Насыщенный пар концентрируется между трубами, жидкость тем временем перемещается по внутренней трубе. И собранный своими руками, и купленный в магазине теплообменник обойдется недешево, но экономить на материалах не стоит: функция устройства слишком важна.

Конструкция теплообменника типа труба в трубе

Существует несколько вариантов сборки теплообменника труба в трубе. Их конструкция разнится в зависимости от разных вариантов компоновок. В любом случае, имея под рукой правильные чертежи и качественные детали, можно собрать теплообменник любого типа.

Для этого потребуются стандартные элементы:

  • Труба теплообменная
  • Труба кожуховая
  • Опора
  • Решетка кожуховых труб
  • Камера.

Используя различные схемы и чертежи, можно собрать подходящий теплообменник быстро и без дополнительных усилий.

Важный этап – расчет параметров теплообменника. Важно правильно оценить все параметры, чтобы правильно спроектировать теплообменный аппарат. Для этого оцениваются: расход теплоносителя, порядок потерь тепла, степень сопротивления используемых материалов, величины стартовой и конечной температур, технологическую схему, тепловую нагрузку, гидравлические данные, направление трафика тепла, баланс работоспособности сети, физико-химические свойства материала, комбинация сопутствующих факторов.

Но самыми важными являются другие показатели: расчет потери напора, определение экономической эффективности, подсчет площади теплообменника, вычисление тепловой изоляции оснащения, определение геометрических величин «девайса», включая узлы. На основании этих данных проектируются теплообменники труба в трубе для промышленных предприятий и домашнего применения. Провести все расчеты самостоятельно, без специального образования, очень сложно, поэтому лучше взять готовые чертежи.

В любом чертеже схема теплообменника труба в трубе представляет собой звенья, соединенные определенным образом. При расчетах определяется, какой из материалов следует задействовать для каждого из элементов. На этом же этапе просчитываются предельные величины. При любых типах конструкции предпочтение отдается нержавеющим составам, например, специально обработанной стали или медным сплавам.

This entry was posted in Ремонт. Bookmark the <a href="https://kabel-house.ru/remont/teploobmennik-truba-v-trube/" title="Permalink to Теплообменник труба в трубе" rel="bookmark">permalink</a>.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *