Содержание
- Кремниевые солнечные батареи
- Монокристаллические солнечные батареи
- Поликристаллические солнечные панели
- Аморфные солнечные панели или батареи из аморфного кремния
- Плёночные солнечные батареи
- Плёночные батареи на основе теллурида кадмия
- Плёночные панели на основе селенида меди-индия
- Полимерные солнечные панели
- Сравнительная таблица: виды солнечных батарей и уровень КПД
- Что такое концентрационные солнечные модули?
- Виды солнечных батарей
- Сравнение: виды солнечных панелей и их КПД
- Самые эффективные солнечные батареи
- Виды солнечных батарей: сравнительный обзор конструкций и советы по выбору панелей
- Принцип работы солнечных панелей
- Характеристики панелей на основе кремния
- Обзор бескремниевых устройств
- Какую солнечную панель выбрать?
- Работают ли солнечные батареи в пасмурную погоду?
- Зачем солнечной батарее нужен запас по напряжению
- Чем отличаются MPPT-контроллеры от PWM-контроллеров
- Какие солнечные батареи лучше работают в пасмурную погоду
- Как работают солнечные батареи зимой
- Работают ли солнечные батареи в пасмурную погоду
- Солнечные батареи в пасмурную погоду
- Типы солнечных батарей
- Принцип функционирования
- Разновидности
- Резюме
Какие бывают виды солнечных батарей или панелей?
На данный момент типы солнечных батарей составляют такое разнообразие и их такое великое множество, что каждый потребитель желающий обзавестись подобным источником энергии задаётся вопросом: “А как выбрать солнечную батарею? Какие есть солнечные батареи?” Об этом наша статья: мы постараемся особо не влезая в дебри технологий разобраться на какие типы делятся батареи или панели, питающиеся от энергии солнца, ведь рынок пестрит выгодными предложениями и желаем продать Вам ту или иную систему. В первую очередь различаются солнечные модули материалами, принципом работы и принципом производства. Так давайте же разбираться что и почему.
Кремниевые солнечные батареи
Такой тип солнечных панелей отличается в первую очередь своим материалом, который, как можно догадаться из названия, представлен кремнием. Сегодня это самые популярные батареи на рынке. Это связано с тем, что кремний сравнительно легкодоступный материал, он недорогой и при этом обладает хорошими показателями производительности, по сравнению с конкурентными видами солнечных модулей. Производят их не только из кремния, но и в том числе из моно, поликристаллов в также аморфного кремния. В чём разница?
Монокристаллические солнечные батареи
Для производства солнечных батарей монокристаллического типа используют очищенный, самый чистый кремний. Такой вид солнечной панели выглядит как силиконовые соты, или ячейки, которые соединены в одну структуру. После того, как очищенный монокристалл затвердевает, его разделяют на супер тонкие пластины, толщиной до 300 мкм. Такие готовые пластины соединены тонкой сеткой из электродов. В сравнении с аморфными батареями, такие стоят дороже, ведь технология их производства в разы сложнее. При этом такие батареи стоит выбрать хотя бы за их высокий коэффициент полезного действия(КПД). На уровне 20%. Да, для солнечных батарей это хороший показатель.
Поликристаллические солнечные панели
Для того чтобы получить поликристаллы, кремниевую субстанцию медленно охлаждают. Такой подход к технологии производства значительно дешевле чем в предыдущем типе панелей, поэтому и стоит этот вид дешевле. При этом для изготовления требуется меньше энергии, а это ещё раз благотворно действует на цену. Но чем-то же нужно жертвовать? Поэтому у таких батарей КПД ниже — до 18%. Связано такое падение коэффициента с образованиями внутри поликристалла, которые снижают эффективность. Для того ещё лучше разобраться в различиях между первым и вторым типом батарей, взгляните на таблицу:
Сравнительная таблица монокристаллических и поликристаллических солнечных панелей:
Фактор | Монокристаллы | Поликристаллы |
Разница в структуре | Кристаллы направлены в одну сторону, зёрна параллельны | Кристаллы направлены в разную стороны, не параллельны |
Стабильность работы | Высокая | Меньше |
Стоимость | Дорогостоящие батареи | Также дорогостоящие, но дешевле |
Окупаемость | 2 года | до 3х лет |
КПД | до 22% | до 18% |
Технология производства | Совершеннее, сложнее, точнее | Проще, отсюда и низкая стоимость |
Аморфные солнечные панели или батареи из аморфного кремния
- Данный вид солнечных батарей можно отнести как к кремниевым (потому что материал изготовления — кремний) так и к плёночным, ведь изготовлены они по принципу производства плёночных батарей. Но всё же отличия есть.
- Здесь используются не кристаллы кремния, а так называемый силан (кремневодород). Его наносят на подложку, внутри батарей. КПД у такого вида солнечных батарей намного ниже — около 5%. Но всё не так плохо! Есть и преимущества, среди которых можно назвать: намного лучшее поглощение (в 20 раз лучше), лучше работает при отсутствии прямого солнца, когда пасмурно, эластичность панелей.
- Также бывают сочетания моно и поликристаллических панелей с аморфными. Такое сочетание позволяет соединить преимущества двух различных типов. Например, батареи лучше работают, когда солнца недостаточно для обычных кристаллических батарей.
Плёночные солнечные батареи
Плёночные панели — это следующий шаг развития источников питания на солнечной энергии. Шаг, который продиктован в первую очередь необходимостью снижения цен на производство батарей и стремлением к повышению энергоэффективности.
Плёночные батареи на основе теллурида кадмия
- Кадмий — это материал, который обладает высоким уровнем светопоглощения, открытый как материал для солнечных батарей в 70-х годах. На сегодняшний день, этот материал применяется уже не только в космосе, на околоземной орбите, но и активно используется в качестве материала для солнечных панелей обычного, домашнего пользования.
- Самой главной проблемой в использовании такого материала является его ядовитость. Однако исследования говорят о том, что уровень кадмия. который уходит в атмосферу, слишком мал, чтобы наносить вред здоровью человека. Также, несмотря на низкий КПД в районе 10%, стоит единица мощности в таких батареях меньше, чем у аналогов.
Плёночные панели на основе селенида меди-индия
Тип солнечных батарей из таких материалов используют медь, индий, селен, как полупроводник. Кстати, индий — это основной, очень необходимый материал, который используется в производстве жидкокристаллических мониторов. Поэтому, оставляя такой материал для этих целей, часто используют галлий, который замещает индий по своим функциям. КПД здесь выше, чем у батарей из теллурида кадмия — около 20%.
Полимерные солнечные панели
Вид солнечных батарей, который не так давно был изобретён и начал производиться. Здесь проводниками выступают полифенилен, фуреллены, фталоцианин меди. При этом такая плёнка очень тонкая — около 100 нм. Несмотря на низкий уровень КПД, около 5%, всё же можно выделить причины, почему стоит выбирать этот тип солнечных батарей: Доступность материалов, дешевизна, отсутствие вредных выделений в атмосферу. Так что такие батареи отлично подходят потребителям, ведь обладают отличной эластичностью и экологичностью.
Сравнительная таблица: виды солнечных батарей и уровень КПД
Напоследок, хотелось бы сравнить коэффициенты полезного действия каждого типа солнечных батарей, но не забывайте, что помимо КПД есть много других факторов, которые могут охарактеризовать каждый тип как с хорошей, так и плохой стороны.
КПД | в процентах |
Монокристаллические | 17-22% |
Поликристаллические | 12-18% |
Аморфные | 5-6% |
Теллурид кадмия | 10-12% |
Селенид меди-индия | 15-20% |
Полимерные | 5-6% |
Что такое концентрационные солнечные модули?
Концентрационные модули помогают более эффективно использовать площадь солнечных панелей, получая экономию площади почти в два раза. Однако такая система осложнена необходимостью инсталляции механического модуля, который бы поворачивал линзы в сторону солнца. Особенно такие установки необходимы в местах, где прямое излучение солнца есть в достатке на протяжении всего года.
Виды солнечных батарей
Современные солнечные комплексы работают на различных видах фотоэлектрических панелей, обладающих своими особенностями и параметрами. Все виды солнечных батарей создавались для достижения максимальной эффективности, производительности, получения стабильных и равномерных результатов. Несмотря на заметную разницу в показателях, все разновидности активно используются, демонстрируя свои лучшие качества в предлагаемых условиях.
Постоянные разработки новых образцов фотоэлектрических материалов привели к появлению большого количества солнечных панелей. В их число входят:
- кремниевые, в т. ч. моно- и поликристаллические, аморфные виды
- из теллурида кадмия
- полупроводниковые панели из селена, индия, галлия и меди (CIGS)
- полимерные модули
По механическим свойствам различают:
- жесткие
- гибкие (тонкопленочные)
- одно- и двухсторонние панели
Все разновидности демонстрируют высокие эксплуатационные качества — они практически не требуют обслуживания, нуждаясь только в очистке рабочей поверхности от пыли, ухудшающей прием солнечной энергии фотоэлементами.
Кремниевые
Солнечные панели из кремния являются наиболее распространенными из всех видов. Технология их производства хорошо отработана, производители сумели добиться максимальной эффективности продукции, повторяемости результата. Все виды солнечных панелей, использующиеся в солнечных комплексах, делятся на три основные группы:
- монокристаллические
- поликристаллические
- аморфные
Технология их производства заметно различается, общим признаком остается только базовый материал изготовления. Отличаются они и по эффективности, особенностям использования.
Однако, все разновидности кремниевых панелей лидируют среди альтернативных вариантов по производительности (моно- и поликристаллические) или стоимости (аморфные). Рассмотрим их внимательнее:
Монокристаллические
Среди всех существующих разработок наиболее эффективными являются монокристаллические кремниевые панели. Несмотря на довольно высокую цену, они востребованы и являются для пользователей наиболее предпочтительным вариантом. Особенность этих фотоэлектрических элементов в том, что они являются тонким срезом с единого кристалла кремния.
Технология выращивания состоит в опускании правильного эталонного кристалла малого размера в расплав кремния. Этот небольшой образец становится основой для роста большого кристалла, который, по достижении нужного размера, распиливают на тонкие пластинки. Форма близка к цилиндру, поэтому отдельные элементы имеют срезанные края.
По этому признаку, а также по цвету, монокристаллические панели легко отличить от любых других видов — они черные и по всей площади панели имеют металлические защитные крышки на точках соединения срезанных углов.
КПД таких модулей составляет 18-22 %, долговечность — около 25 лет (и более). Единственным недостатком считается высокая стоимость монокристаллов.
Поликристаллические элементы созданы для ускорения и удешевления производственного процесса. Выращивание монолитного кристалла — длительный и дорогостоящий процесс, что отрицательно отражается на себестоимости.
Поликристаллические панели делают из отливки, полученной после розлива расплавленного кремния в формы. Застывшую массу разрезают на тонкие пластинки, которые и становятся основой для панелей. Их КПД составляет 12-18 %, цена ниже примерно на 20 %. Внешне поликристаллические панели легко отличить по синему цвету и отсутствию каких-либо дополнительных элементов.
Дешевизна и относительно высокие технические характеристики сделали поликристаллические элементы наиболее распространенными среди всех остальных видов. Особенностью, увеличивающей возможности модулей, является способность вырабатывать электроэнергию в пасмурную погоду. Это подходит для многих северных регионов или районов с малым количеством солнечных дней.
Различия моно- и поликристаллических панелей
Основная разница между этими разновидностями состоит в ориентации микрочастиц кремния. В монокристалле они все направлены в одну сторону и способны с максимальной эффективностью получать солнечную энергию. У поликристаллов элементы расположены хаотично, что снижает общую производительность.
Этим же объясняется их способность работать в пасмурную погоду — есть примерно равное количество элементов, оптимальным образом расположенных к свету любой направленности. У монокристалла изменение положения лучей сразу снижает выработку энергии у всей панели. Поэтому для регионов с низкой инсоляцией выбор поликристаллических панелей будет более оправданным и эффективным.
Аморфные
Эти панели сочетают в себе и достоинства, и недостатки жестких кремниевых образцов. Они изготавливаются методом напыления на гибкую основу слоя кремния. Это делает панель гибкой и способной к установке на рельефную поверхность. В результате появляется возможность получать энергию в течение для в более равномерном и стабильном режиме.
Их КПД составляет всего 5-6 %, но работоспособность значительно выше — только аморфные панели начинают давать энергию в условиях слабой освещенности, когда моно- и поликристаллические элементы еще не готовы к работе.
Современные аморфные панели третьего поколения способны развивать КПД до 12 %, но их цена пока слишком велика для такой эффективности. Основная особенность этих элементов состоит в хорошей производительности при высокой температуре среды. Кроме этого, на производство уходит всего 10 % кремния, что значительно снижает себестоимость.
Пленочные
Известно, что кремний плохо поглощает солнечный свет в инфракрасном диапазоне. Это заметно снижает производительность и эффективность панелей. Пленочные типы солнечных панелей создавались для того, чтобы устранить этот недостаток. Они изготовлены из арсенида галлия, теллурида кадмия или селенидов меди, галлия, индия. Эти материалы хорошо поглощают энергию солнца во всех диапазонах, причем, толщина слоя может составлять всего несколько микрон против 100-300 мкм для кремниевых образцов.
Пленочные панели представляют собой два слоя гибкой прозрачной основы, между которыми напылены те или иные материалы. В среднем, КПД пленочных модулей не превышает 11-13 %, но в некоторых случаях отмечается 18 и даже 20 %.
Производство пока находится в начальной стадии. Виной этого является недостаток индия, сложности работы с галлием и другие технологические проблемы.
Полимерные
Дороговизна и прочие недостатки кремниевых солнечных панелей вызвали рост разработок, призванных решить существующие проблемы, снизить цены и улучшить качество модулей. Одним из наиболее перспективных направлений считаются полимерные солнечные батареи.
Они состоят из слоя специального полимера, нанесенного на гибкую основу, и алюминиевых токопроводящих дорожек. Эти панели обладают заметными преимуществами:
- компактность
- малый вес и размер
- гибкая структура позволяет монтировать на рельефные поверхности
- сравнительно низкая себестоимость
Основным недостатком полимерных панелей долгое время считалась низкая эффективность. Однако, в последнее время состоялся ряд открытий, сделанных учеными из разных стран. В результате удалось повысить показатели модулей до вполне конкуреноспособных значений.
Сегодня полимерные типы солнечных батарей демонстрируют КПД 6,5 % при относительно низкой освещенности поверхности.
Лидерами в производстве этих фотоэлектрических элементов являются датские производители. В целом, промышленное производство пока находится в зачаточном состоянии, но, с увеличением качества и эффективности, количество изготовителей резко возрастет.
Фотосенсибилизированные
В настоящее время эти изделия являются лишь опытными образцами, прототипами промышленных панелей. Основным элементом является т. н. ячейка Гретцеля, которая представляет собой стеклянную проводящую колбу, заполненную красителем.
Он нужен для более активного поглощения света и является непосредственной средой выработки энергии. При поглощении солнечных лучей происходит возбуждение одного из электронов молекулы красителя. Он проходит через несколько стадий и попадает на второй электрод, образуя электрический ток. Одновременно происходит процесс восстановления молекулы и новый цикл перехода электронов.
Считается, что панели этого типа в недалеком будущем смогут заменить кремниевые образцы. Пока они находятся в стадии отработки технологии и совершенствования конструкции, но работы ведутся весьма активно и успешно.
Концентрационные солнечные модули
Эти системы не вырабатывают ток, производя лишь тепловую энергию. Они используются для нагрева теплоносителя и подачи его в отопительный контур. Существует несколько разновидностей, но принцип действия всегда один — нагрев черной емкости с водой.
Для защиты от внешней температуры используется прозрачная защитная крышка. Есть вакуумные системы, представляющие собой двойные колбы, между которыми откачан воздух. Они способны греть воду даже при отрицательных наружных температурах, но очень хрупкие и не подлежат восстановлению.
Есть модули, в которых солнечный свет концентрируется параболическим зеркалом. В его фокус помещается резервуар с теплоносителем. Который нагревается в проточном режиме. Этот способ эффективен, но требует большого пространства и дорогостоящего зеркала.
Сравнение: виды солнечных панелей и их КПД
Сравним показатели панелей разных видов:
- кремниевые — 6-8 % (аморфные), 12-18 % (поликристаллические), 18-22 % (монокристаллические)
- аморфные — 8-12 %
- пленочные — 11-13 % (отдельные панели показывают КПД 15 %)
- полимерные — 6-8 %
- фотосенсибилизированные — до 10 % (расчетные значения — 33 %)
Необходимо учитывать, что появление более эффективных образцов — вопрос совсем небольшого времени. Уже сегодня есть разработки, достигающие 44 %, хотя их стоимость пока слишком велика. Производители и ученые постоянно работают над увеличением выработки энергии панелями разных видов.
Самые эффективные солнечные батареи
Самыми эффективными признают монокристаллические панели, которые могут демонстрировать КПД до 22 %. Это промышленные образцы, которые есть в продаже.
Опытные экземпляры значительно эффективнее. Но их пока нельзя приобрести. Поэтому рассматривать возможности солнечных батарей следует только у доступных разновидностей. На втором месте находятся поликристаллические панели и некоторые модели пленочных модулей. Остальные виды пока отстают, но процесс доводки их возможностей ведется непрерывно.
Виды солнечных батарей: сравнительный обзор конструкций и советы по выбору панелей
Альтернативная энергетика максимально развивается в Европе, показывая результатами свою перспективность. Появляются новые виды солнечных батарей, повышается их КПД.
При желании обеспечить работу промышленного здания или жилого помещения за счет энергии солнца, необходимо предварительно узнать об отличиях оборудования, понять, какие солнечные панели подходят под климатические условия определенного региона.
Мы поможем разобраться в этом вопросе. В статье рассмотрен принцип работы фотоэлектрических преобразователей, приведен обзор разных видов солнечных батарей с указанием их характеристик, преимуществ и недостатков. Ознакомившись с материалом, вы сможете сделать правильный выбор для обустройства эффективной гелиосистемы.
Принцип работы солнечных панелей
Подавляющее большинство солнечных панелей являются в физическом смысле фотоэлектрическими преобразователями. Электрогенерирующий эффект возникает в месте полупроводникового p-n перехода.
Именно кремниевые пластины составляют основу себестоимости солнечных панелей, но при их использовании в качестве круглосуточного источника электроэнергии придется дополнительно купить дорогостоящие аккумуляторные батареи
Панель состоит из двух кремниевых пластин с различными свойствами. Под действием света в одной из них возникает недостаток электронов, а в другой – их избыток. Каждая пластина имеет токоотводящие полоски из меди, которые подсоединяются к преобразователям напряжения.
Промышленная солнечная панель состоит из множества ламинированных фотоэлектрических ячеек, скрепленных между собой и закрепленных на гибкой или жесткой подложке.
КПД оборудования зависит во многом от чистоты кремния и ориентации его кристаллов. Именно эти параметры пытаются улучшить инженеры последние десятилетия. Основной проблемой при этом является высокая стоимость процессов, которые лежат в основе очищения кремния и расположения кристаллов в одном направлении на всей панели.
Ежегодно максимальные КПД различных солнечных панелей изменяются в большую сторону, потому что в исследования новых фотогальванических материалов вкладываются миллиарды долларов (+)
Полупроводники фотоэлектрических преобразователей могут изготавливаться не только из кремния, но и из других материалов – принцип работы батареи при этом не изменяется.
Классифицируют промышленные солнечные панели по их конструкционным особенностям и типу рабочего фотоэлектрического слоя.
Различают такие виды батарей по типу устройства:
- гибкие панели;
- жесткие модули.
Гибкие тонкопленочные панели постепенно занимают всё большую нишу на рынке благодаря своей монтажной универсальности, ведь установить их можно на большинстве поверхностей с разнообразными архитектурными формами.
Реальные характеристики солнечных панелей обычно ниже, чем указанные в инструкции. Поэтому перед их установкой дома желательно самому увидеть похожий реализованный проект
По типу рабочего фотоэлектрического слоя солнечные батареи разделяются на такие разновидности:
- Кремниевые: монокристаллические, поликристаллические, аморфные.
- Теллурий-кадмиевые.
- На основе селенида индия- меди-галлия.
- Полимерные.
- Органические.
- На основе арсенида галлия.
- Комбинированные и многослойные.
Интерес для широкого потребителя представляют не все типы солнечных панелей, а только лишь первые два кристаллических подвида.
Хотя некоторые другие типы панелей и имеют большие КПД, но из-за высокой стоимости они не получили широкого распространения.
Галерея изображений Фото из Массив монокристаллических солнечных фотоэлементов Солнечная панель на основе поликристаллов кремния Солнечная панель в виде пленки Фотогальванические элементы из селенида индия-меди-галлия Фотоэлемент на основе арсенида галлия Солнечные панели со слоем теллурида кадмия Производство органических солнечных панелей Солнечная батарея из полиэфира
Кремниевые фотоэлектрические элементы довольно чувствительны к нагреву. Базовая температура для измерения электрогенерации составляет 25°C. При её повышении на один градус эффективность панелей снижается на 0,45-0,5%.
Далее будут подробно рассмотрены солнечные панели, которые представляют наибольший потребительский интерес.
Характеристики панелей на основе кремния
Кремний для солнечных батарей изготавливают из кварцевого порошка – размолотых кристаллов кварца. Богатейшие залежи сырья есть в Западной Сибири и Среднем Урале, поэтому перспективы данного направления солнечной энергетики практически безграничны.
Даже сейчас кристаллические и аморфные кремниевые панели занимают уже более 80% рынка. Поэтому стоит рассмотреть их более подробно.
Монокристаллические кремниевые панели
Современные монокристаллические кремниевые пластины (mono-Si) имеют равномерный темно-синий цвет по всей поверхности. Для их производства используется наиболее чистый кремний. Монокристаллические фотоэлементы среди всех кремниевых пластин имеют самую высокую цену, но обеспечивают и наилучший КПД.
Большие монокристаллические солнечные панели с поворотными механизмами идеально вписываются в пустынные пейзажи. Там обеспечиваются условия для максимальной производительности
Высокая стоимость производства обусловлена сложностью ориентации всех кристаллов кремния в одном направлении. Из-за таких физических свойств рабочего слоя максимальный КПД обеспечивается только лишь при перпендикулярном падении солнечных лучей на поверхность пластины.
Монокристаллические батареи требуют дополнительного оборудования, которое автоматически поворачивает их в течение дня, чтобы плоскость панелей была максимально перпендикулярна солнечным лучам.
Слои кремния с односторонне ориентированными кристаллами вырезаются из цилиндрического бруска металла, поэтому готовые фотоэлектрические блоки имеют вид закруглённого по углам квадрата.
К преимуществам монокристаллических кремниевых батарей относят:
- Высокий КПД со значением 17-25%.
- Компактность – меньшая площадь размещения оборудования из расчета на единицу мощности, в сравнении с поликристаллическими кремниевыми панелями.
- Долговечность – достаточная эффективность генерации электроэнергии обеспечивается до 25 лет.
Недостатков у таких батарей всего два:
- Высокая стоимость и длительная окупаемость.
- Чувствительность к загрязнению. Пыль рассеивает свет, поэтому у покрытых ею солнечных панелей резко снижается КПД.
Из-за потребности в прямых солнечных лучах монокристаллические солнечные панели устанавливаются в основном на открытых площадках или на высоте. Чем ближе местность к экватору и чем больше в ней солнечных дней, тем более предпочтительна установка именно этого типа фотоэлектрических элементов.
Поликристаллические солнечные батареи
Поликристаллические кремниевые панели (multi-Si) имеют неравномерный по интенсивности синий окрас из-за разносторонней ориентированности кристаллов. Чистота кремния, используемого при их производстве, несколько ниже, чем у монокристаллических аналогов.
Разнонаправленность кристаллов обеспечивает высокий КПД при рассеянном свете – 12-18%. Он ниже, чем в однонаправленных кристаллах, но в условиях пасмурной погоды такие панели оказываются более эффективны.
Неоднородность материала приводит и к снижению себестоимости производства кремния. Очищенный металл для поликристаллических солнечных панелей без особых ухищрений заливается в формы.
На производстве используются специальные технические приемы для формирования кристаллов, однако их направленность не контролируется. После остывания кремний нарезают слоями и обрабатывают по специальному алгоритму.
Поликристаллические панели не требуют постоянной ориентации в сторону солнца, поэтому для их размещения активно используются крыши домов и промышленных зданий.
Днем при легкой облачности преимуществ солнечных панелей из аморфного кремния заметно не будет, их достоинства раскрываются только при плотных тучах или в тени (+)
К достоинствам солнечных батарей с разнонаправленными кристаллами относят:
- Высокая эффективность в условиях рассеянного света.
- Возможность стационарного монтажа на крышах зданий.
- Меньшая стоимость по сравнению с монокристаллическими панелями.
- Длительность эксплуатации – падение эффективности через 20 лет эксплуатации составляет всего 15-20%.
Недостатки у поликристаллических панелей также имеются:
- Пониженный КПД со значением 12-18%.
- Относительная громоздкость – требуется больше пространства для установки из расчета на единицу мощности в сравнении с монокристаллическими аналогами.
Поликристаллические солнечные панели завоевывают всё большую рыночную долю среди других кремниевых батарей. Это обеспечивается широкими потенциальными возможностями для удешевления стоимости их производства. Ежегодно увеличивается и КПД таких панелей, стремительно приближаясь к 20% у массовых продуктов.
Солнечные панели из аморфного кремния
Механизм производства солнечных панелей из аморфного кремния принципиально отличается от изготовления кристаллических фотоэлектрических элементов. Здесь используется не чистый неметалл, а его гидрид, горячие пары которого осаждаются на подложку.
В результате такой технологии классические кристаллы не образуются, а затраты на производство резко снижаются.
Фотоэлементы из осажденного аморфного кремния можно закреплять как на гибкой полимерной подложке, так и на жестком стеклянном листе
На данный момент существует уже три поколения панелей из аморфного кремния, в каждом из которых заметно повышается КПД. Если первые фотоэлектрические модули имели эффективность 4-5%, то сейчас на рынке массово продаются модели второго поколения с КПД 8-9%.
Аморфные панели последней разработки имеют эффективность до 12% и уже начинают появляться в продаже, но они пока ещё достаточно дорогие.
За счет особенностей данной производственной технологии, создать слой кремния можно как на жесткой, так и на гибкой подложке. Из-за этого модули из аморфного кремния активно используются в гибких тонкоплёночных солнечных модулях. Но варианты с эластичной подложкой стоят намного дороже.
Физико-химическая структура аморфного кремния позволяет максимально поглощать фотоны слабого рассеянного света для генерации электроэнергии. Поэтому такие панели удобны для применения в северных районах с большими свободными площадями.
Не снижается эффективность батарей на основе аморфного кремния и при высокой температуре, хотя они и уступают по этому параметру панелям из арсенида галлия.
При одинаковой стоимости оборудования солнечные панели из гидрида кремния показывают большую производительность, чем их моно- и поликристаллические аналоги (+)
Подытоживая, можно указать такие преимущества аморфных солнечных панелей:
- Универсальность – возможность изготовления гибких и тонких панелей, монтаж батарей на любые архитектурные формы.
- Высокий КПД при рассеянном свете.
- Стабильная работа при высоких температурах.
- Простота и надежность конструкции. Такие панели практически не ломаются.
- Сохранение работоспособности в сложных условиях – меньшее падение производительности при запыленности поверхности, чем у кристаллических аналогов
Срок службы таких фотоэлектрических элементов, начиная со второго поколения, составляет 20-25 лет при падении мощности в 15-20%. К недостаткам панелей из аморфного кремния можно отнести лишь потребность в бо́льших площадях для размещения оборудования требуемой мощности.
Обзор бескремниевых устройств
Некоторые солнечные панели, изготовленные с применением редких и дорогостоящих металлов, имеют КПД более 30%. Они в разы дороже своих кремниевых аналогов, но всё-таки заняли высокотехнологичную торговую нишу, благодаря своим особенным характеристикам.
Солнечные панели из редких металлов
Существует несколько типов солнечных панелей из редких металлов, и не все они имеют КПД выше, чем у монокристаллических кремниевых модулей.
Однако способность работать в экстремальных условиях позволяет производителям таких солнечных панелей выпускать конкурентоспособную продукцию и проводить дальнейшие исследования.
Панели из теллурида кадмия активно используются при облицовке зданий в экваториальных и аравийских странах, где их поверхность нагревается днем до 70-80 градусов
Основными сплавами, применяемыми для изготовления фотоэлектрических элементов, являются теллурид кадмия (CdTe), селенид индия- меди-галлия (CIGS) и селенид индия-меди (CIS).
Кадмий – токсический металл, а индий, галлий и теллур являются довольно редкими и дорогостоящими, поэтому массовое производство солнечных панелей на их основе даже теоретически невозможно.
КПД таких панелей находится на уровне 25-35%, хотя в исключительных случаях может доходить до 40%. Ранее их применяли в основном в космической отрасли, а сейчас появилось новое перспективное направление.
Из-за стабильной работы фотоэлементов из редких металлов при температурах 130-150°C их используют в солнечных тепловых электростанциях. При этом лучи солнца от десятков или сотен зеркал концентрируются на небольшой панели, которая одновременно генерирует электроэнергию и обеспечивает передачу тепловой энергии водяному теплообменнику.
В результате нагрева воды образуется пар, который заставляет вращаться турбину и генерировать электроэнергию. Таким образом солнечная энергия преобразуется в электрическую одновременно двумя путями с максимальной эффективностью.
Полимерные и органические аналоги
Фотоэлектрические модули на основе органических и полимерных соединений начали разрабатывать только в последнем десятилетии, но исследователи уже добились значительных успехов. Наибольший прогресс демонстрирует европейская компания Heliatek, которая уже оснастила органическими солнечными панелями несколько высотных зданий.
Толщина её рулонной пленочной конструкции типа HeliaFilm составляет всего 1 мм.
При производстве полимерных панелей используются такие вещества, как углеродные фуллерены, фталоцианин меди, полифенилен и другие. КПД таких фотоэлементов уже достигает 14-15%, а стоимость производства в разы меньше, чем кристаллических солнечных панелей.
Остро стоит вопрос срока деградации органического рабочего слоя. Пока что достоверно подтвердить уровень его КПД через несколько лет эксплуатации не представляется возможным.
Преимуществами органических солнечных панелей являются:
- возможность экологически безопасной утилизации;
- дешевизна производства;
- гибкая конструкция.
К недостаткам таких фотоэлементов можно отнести относительно низкий КПД и отсутствие достоверной информации о сроках стабильной работы панелей. Возможно, что через 5-10 лет все минусы органических солнечных фотоэлементов исчезнут, и они станут серьезными конкурентами для кремниевых пластин.
Какую солнечную панель выбрать?
Выбор солнечных панелей для загородных домов на широте 45-60° не труден. Здесь стоит рассматривать лишь два варианта: поликристаллические и монокристаллические кремниевые панели.
При дефиците места предпочтение лучше отдать более эффективным моделям с односторонней ориентацией кристаллов, при неограниченной площади рекомендуется приобрести поликристаллические батареи.
Ориентироваться на прогнозы аналитических компаний развития рынка солнечных панелей не стоит, ведь лучшие их образцы, возможно, ещё не изобретены
Выбирать конкретного производителя, требуемую мощность и дополнительное оборудование лучше при участии менеджеров компаний, занимающихся продажей и установкой такого оборудования. Следует знать, что качество и цена фотоэлектрических модулей у крупнейших производителей отличаются мало.
Следует учитывать, что при заказе комплекта оборудования «под ключ», стоимость самих солнечных панелей будет составлять всего лишь 30-40% от общей суммы. Сроки окупаемости таких проектов составляют 5-10 лет, и зависят от уровня энергопотребления и возможности продажи излишков электроэнергии в городскую сеть.
Некоторые мастера предпочитают собирать солнечные батареи собственноручно. На нашем сайте есть статьи с подробным описанием технологии изготовления таких панелей, их подключению и обустройству отопительных гелиосистем .
Советуем ознакомиться:
- Как сделать солнечную батарею своими руками: инструктаж по самостоятельной сборке
- Солнечные системы отопления: разбор технологий обустройства отопления на базе гелиосистем
- Схема подключения солнечных батарей: к контроллеру, к аккумулятору и обслуживаемым системам
Работают ли солнечные батареи в пасмурную погоду?
Солнечные батареи в пасмурную погоду работают далеко не так хорошо, как в солнечную. Вырабатываемое солнечным элементом напряжение зависит от падающего на него светового потока, а именно: напряжение с ростом освещенности возрастает лишь до определенного предела, а дальше уже не растет. Для кремниевого элемента это напряжение составляет 0,6 В, и для повышения напряжения солнечной батареи (панели) элементы соединяют последовательно. Так, для заряда автомобильного аккумулятора номинальным напряжением 12 В необходима батарея из соединенных последовательно 36 элементов с общим напряжением холостого хода 36 х 0,6 = 21,6 (В).
Зачем солнечной батарее нужен запас по напряжению
Запас по напряжению обеспечивает заряд аккумулятора при падении светового потока в пасмурную погоду или заходе солнца за облака и вследствие наличия у солнечного элемента внутреннего сопротивления, снижающего напряжение на выходе при подключении нагрузки, а также для обеспечения зарядки аккумулятора до требуемых 14,4 В. Кроме того, элемент выдает максимальную мощность при нагрузке, обеспечивающей просадку напряжения до 0,47-0,5 В, и при оптимальной нагрузке батарея из 36 элементов выдает напряжение 17-18 В.
Важной характеристикой солнечного элемента, кроме напряжения холостого хода, является ток короткого замыкания. Ток короткого замыкания растет с ростом освещенности, а в пасмурную погоду снижается, что ведет к уменьшению отдаваемой батареей мощности.
Солнечная батарея в пасмурную погоду снижает свою мощность в 15-20 раз, а в облачную в 10-15 раз.
Однако при очень низкой освещенности солнечной батареи ее напряжение падает настолько низко, что становится ниже напряжения аккумулятора. Чтобы исключить разряд аккумулятора через солнечные элементы, в самом простом случае между солнечной батареей и аккумуляторной батареей включают полупроводниковый диод с односторонней проводимостью, пропускающий ток лишь в направлении от солнечной батареи к аккумулятору.
Чем отличаются MPPT-контроллеры от PWM-контроллеров
Чтобы использовать вырабатываемую солнечной батареей энергию даже в условиях низкой освещенности, лучше использовать современные контроллеры заряда. Используются 2 типа контроллеров – PWM (с широтно-импульсной модуляцией — ШИМ) и MPPT (со слежением за точкой максимальной мощности). PWM-контроллеры более простые и дешевые, при ярком освещении (и высоком напряжении солнечной батареи) мощность батареи снижается (излишнее напряжение попросту недоиспользуется), а вот MPPT-контроллеры в состоянии понизить напряжение солнечной батареи с соответствующим повышением отдаваемого тока и сохранением отдаваемой мощности, поскольку батарея работает наиболее эффективно лишь при оптимальном для данных условий (зависящих от освещенности) сопротивлении нагрузки, а контроллер способен обеспечить условие оптимальности нагрузки. В сравнении с PWM-контроллерами MPPT-контроллеры позволяют взять от батареи при ярком солнце на 30% больше мощности.
Что касается работы солнечной батареи с MPPT-контроллерами в пасмурную погоду, то считается, что ввиду пониженного напряжения батареи преимущества контроллеров этого типа не реализуются, поскольку контроллер дает на выходе ток не больше, чем PWM-контроллер, соответственно нет и добавки в мощности.
Какие солнечные батареи лучше работают в пасмурную погоду
Для работы в условиях преобладающего пасмурного неба очень перспективны солнечные элементы, преобразующие в электрический ток не только ультрафиолетовое, но и инфракрасное излучение Солнца. В массовом порядке такие панели пока не производятся, но за ними будущее.
Наиболее эффективны в пасмурную погоду кремниевые поликристаллические батареи, хорошо поглощающие не только прямое солнечное излучение, но и рассеянный свет, проникающий через облака. Связано это с тем, что в поликристаллических элементах кристаллы кремния ориентированы не упорядоченно, а хаотически, что, с одной стороны, снижает эффективность батареи при прямом падении солнечного излучения, а, с другой, снижает ее незначительно при характерном для пасмурной погоды рассеянном освещении.
Как работают солнечные батареи зимой
Зимой сокращается длительность светового дня, и батарея начинает вырабатывать меньше энергии. Чем южнее, тем менее существенна разница между летней и зимней выработкой энергии. На Дальнем Востоке эффективность батарей снижается зимой всего в 1,5-2 раза, а в Москве и Подмосковье до 8 раз.
Очень важен угол наклона солнечных панелей. Можно менять угол наклона в зависимости от сезона (зимой наклон меньше), либо выставлять некий зависящий от широты местности угол (средний между летним и зимним) на целый год. Зимой оптимальный угол наклона солнечных модулей равен увеличенной на 10-15°, а летом уменьшенной на 10-15° широте места установки. В качестве примера, на широте Москвы 56° зимой угол наклона должен составлять 66-71° (иногда панели в ущерб производительности устанавливают вертикально, чтобы исключить налипание снега).
Налипающий на панели снег зимой представляет особую проблему, его необходимо периодически счищать с панелей. Но иногда снег успевает растаять самостоятельно, поскольку активно работающие панели нагреваются.
А вот снег на окружающих панели участках местности повышает эффективность солнечных батарей, поскольку они начинают улавливать отраженный снегом свет. Особенно повышают в этих условиях свою производительность панели из поликристаллического кремния, улавливающие отраженный и рассеянный свет.
При намерении обустроить домашнюю солнечную электростанцию следует решить следующие вопросы:
- будут ли солнечные панели эксплуатироваться зимой;
- будут ли панели устанавливаться неподвижно либо угол их наклона будет изменяться в зависимости от сезона;
- стоит ли приобретать дорогой MPPT-контроллер, либо можно ограничиться более простым и дешевым PKW-контроллером.
Работают ли солнечные батареи в пасмурную погоду
Солнечная батарея (панель) является наиболее распространенным прибором, используемым для получения бесплатной электрической энергии для бытового и промышленного использования.
А о том, работают ли солнечные батареи зимой и в пасмурную погоду, мы расскажем в настоящей статье нашего проекта.
Солнечная батарея – это техническое устройство, представляющее собой определенное количество фотоэлектрических преобразователей соединенных в единую цепь и служащих для преобразования солнечной энергии в электрическую.
Использование солнечных батарей для электроснабжения жилого дома круглый год — это реально
В силу того, что зимой продолжительность светового дня снижается, то и эффективность работы солнечных батарей в это время года также понижается.
К сведению! В зависимости от места размещения солнечной электростанции и погодных условий, показатель эффективности работы солнечных панелей может понизиться в несколько раз. В числовом выражении это может составить от 20 до 80 % от номинальной мощности.
Низкие температуры не оказывают влияние на производительность подобного оборудования, как считают некоторые пользователи, а вот расположение по отношению к солнцу, выражающееся в угле наклона панелей по отношению к поверхности земли, очень важно в этот период года.
Кроме этого, важным фактором, оказывающим влияние на производительность солнечных батарей зимой, является отсутствие снега на их рабочей поверхности, т.к. при его наличии, работа фотоэлектрических преобразователей невозможна.
Важно! Для обеспечения должной производительности солнечной электростанции необходимо регулировать угол наклона панелей по отношению к солнцу, а также очищать их рабочую поверхность от снега и наледи.
Только убирая снег с рабочей поверхности солнечных панелей можно добиться эффективности их использования в зимний период
К сведению! Для того, чтобы рассчитать производительность солнечной установки, в зависимости от угла размещения по отношению к солнцу, можно воспользоваться калькулятором типа «PVWatts», размещенном на сайте NREL
Использование солнечных батарей зимой
Используя специальное оборудование, каковым являются трекеры, можно упростить обслуживание солнечных батарей зимой.
Солнечный трекер – это техническое устройство, позволяющее отслеживать расположение солнца на небосоводе и перемещать солнечную панель в оптимальное положение, для наиболее эффективного поглощения солнечных лучей.
При использовании трекеров производительность гелио оборудования возрастает на 40 – 45 %, что особенно важно при его использовании в зимний период.
Использование трекеров хоть и повышает эффективность использования солнечных батарей, но, тем не менее, очищать наружную поверхность оборудования все равно приходиться вручную
Одним из вариантов упрощения обслуживания солнечных панелей зимой, особенно если они смонтированы на крыше дома, является укладка на их наружной поверхности греющего кабеля, который можно приобрести в торговых организациях или через интернет.
Опыт успешного использования такого решения уже имеется, с ним можно ознакомиться пройдя по следующей ссылке: https://pikabu.ru/ (№232 «Подогрев солнечных панелей зимой. Отчет по эксперименту».)
Солнечные батареи в пасмурную погоду
Фотоэлектрические преобразователи, являющиеся основным элементом солнечной батареи, способны вырабатывать электрический ток даже в пасмурную погоду, когда нет прямых солнечных лучей. Однако в такой ситуации производительность солнечного оборудования значительно снижается.
Так при незначительной облачности эффективность работы понизиться на 20 – 40 % от номинальной, а в пасмурную погоду – на 70 – 80 %.
Какие солнечные панели работают лучше в пасмурную погоду
Разные по конструкции солнечные панели по-разному работают при снижении освещенности, что обусловлено пределом чувствительности фотоэлементов входящих в их состав.
Для кремниевых преобразователей данный показатель составляет 150 – 200 Вт/м2, а для тонкопленочных – 100 – 150 Вт/м2.
К сведению! Панели из аморфного кремния лучше поглощают рассеянный свет, чем монокристаллические аналоги и изготовленные из поликристаллов.
Солнечная батарея в пасмурную погоду хоть и менее эффективна, чем при солнечной погоде, тем не менее она способна обеспечить требуемый заряд аккумуляторов, правда за более продолжительное время
Кроме этого на КПД использования гелио панелей влияет фактура наружной поверхности.
Если эта поверхность рифленая или волнообразная, то производительность увеличивается на 10 -15%. Это обусловлено увеличением площади поверхности улавливающей солнечный свет, особенно если это рассеянные лучи, обеспечивающие работу солнечных приборов в пасмурную погоду.
Как работают солнечные батареи в пасмурную погоду
Может показаться странным, но в пасмурную погоду, когда небо затянуто не полностью, присутствуют лишь отдельные облака в просветы между которыми проникают лучи солнца, производительность солнечных батарей может даже увеличиться.
Причиной такого эффекта является то, что фотоэлементы получают свет не только от нашего светила, но и отраженный от облаков. Соответственно количество лучистой энергии увеличивается, и как следствие, увеличивается и КПД гелио устройств.
При правильном расположении солнечных панелей можно добиться получения максимального количества электрической энергии даже в пасмурную погоду и в зимний период
Для снижения влияния облачности на работоспособность солнечных установок, можно применить несколько способов, вот некоторые из них:
- Если в месте где установлена солнечная электростанция облачность или туман преобладают в определенное время дня (утром, днем, вечером), то панели следует развернуть так, чтобы была возможность их использования с максимальной отдачей (тучи днем, значит развернуть больше на восток, тучи утром — значит направить их западнее, и т.д.).
- Площадь используемых панелей должна быть достаточной, чтобы осуществить зарядку накопителей электрической энергии (аккумуляторов) даже при плохой погоде.
- Мощность контроллера, обеспечивающего работу солнечной станции, должна быть достаточной, чтобы обеспечить зарядку аккумуляторов в часы пик работы станции (полдень + отраженный свет от облаков).
В заключение настоящей статьи хочется отметить, что как бы не противились скептики развитию альтернативной энергетики в нашей стране, она тем не менее развивается по всем направлениям.
Солнечные электростанции работают в Крыму и на Алтае, Республике Башкортостан и Хакасии, в Оренбургской, Саратовской и Белгородской области, а также в Хабаровском крае и Волгоградской области. Во всех этих регионах климат различен, но, тем не менее солнечные станции успешно справляются с поставленными перед ними задачами.
Установленная мощность солнечных электростанций в нашей стране составляет более 800 МВт.
О том, сколько станций используется на бытовом уровне информации в настоящее время нет, но количество желающих установить солнечные батареи у себя на даче или в загородном доме постоянно увеличивается.
Типы солнечных батарей
Альтернативная энергетика набирает скорость хода семимильными шагами. При этом некоторые элементы стали доступны не только промышленным копаниям, но и частным пользователям. К ним относятся солнечные батареи, которые дают возможность стать практически независимыми от централизованной системы. Но когда встает вопрос выбора, начинаются трудности, т. к. есть несколько разновидностей изделий. Статья поможет выбрать именно то, что лучше подходит под конкретные обстоятельства.
Принцип функционирования
Фотоэлементы перекочевали в гражданскую сферу из военно-космической. Именно для этих целей изначально разрабатывались элементы. Если постараться просто описать суть функционирования солнечной батареи, стоит сказать, что по своим физическим свойствам она является фотоэлектрическим преобразователем. Благодаря воздействию солнечных волн происходит перенаправление электронов из катода в анод. Конструкция солнечной панели представлена двумя кремниевыми пластинами, которые обладают различными свойствами. Именно благодаря избытку электронов в одной из пластин и их недостатку в другой возникает p-n переход, способствующий выработке электрического заряда. Каждая пластина проводниками соединена с преобразователями, которые и переводят заряд в подходящий для оборудования.
Промышленный вариант панели представляет собой множество отдельных элементов, которые собраны в большие блоки. Сверху солнечные панели покрыты ламинирующим веществом, которое предотвращает их повреждение различными воздействиями. Основное отличие, которое есть между различными типами солнечных батарей заключается в их производительности. Она напрямую зависит от чистоты используемого кремния и их пространственного расположения. Падению цены на солнечные батареи препятствует сложность их изготовления, которая требует больших затрат на очистку кремния и ориентирование его кристаллов.
Интересно! Изначально в качестве преобразующего элемента использовался селен, но батареи из этого материала обходились слишком дорого, поэтому в 1954 году было внесено предложение о его замене на кремний.
Несмотря на то что существуют различные виды солнечных батарей, у них можно выделить общие плюсы и минусы. Среди первых обращают внимание на:
- неисчерпаемый источник;
- возможность повсеместного внедрения;
- экологичность;
- бесшумность;
- длительный срок эксплуатации;
- дотации от государства;
- возможность масштабирования системы;
- малая вероятность выхода из строя;
- автономность;
- отсутствие платы.
Солнце является атомным реактором, который будет функционировать еще многие тысячи лет. При этом за его использование не приходится платить ни копейки. Стоимость электричества от солнечных батарей сводится к стоимости самой системы и срока ее окупаемости. Если учитывать, что тарифы на электричество постоянно растут, окупаемость сокращается с каждым годом. В большинстве государств предусмотрены специальные дотации за использование зеленой энергии. Кроме того, при излишке мощностей всегда есть возможность продавать их в сеть, за что также можно получать доход. При работе солнечных батарей отсутствуют вредные выбросы, что выгодно отличает их от всевозможных электрических станций. Функционирование всей системы абсолютно бесшумно, поэтому устанавливать солнечные батареи можно в непосредственной близости к дому.
Срок службы солнечных батарей может достигать 25 и больше лет. Благодаря модульности системы она хорошо поддается масштабированию. Это означает, что если со временем увеличивается расход электроэнергии в силу установки нового оборудования, то производительность системы можно повысить простой установкой дополнительных элементов. Трущиеся части в системе отсутствуют, поэтому выход из строя определенных элементов возможен, но маловероятен. Система с солнечными панелями является полностью самодостаточной и может функционировать без вмешательства пользователя.
Обратите внимание! В определенных случаях пиковая нагрузка может приходиться на тот период, когда энергии солнца недостаточно, а емкость аккумуляторов на исходе. В этом случае устанавливается специальный контроллер, который позволяет переключаться на центральную сеть питания, когда это необходимо.
Систему сложно назвать совершенной, поэтому у нее есть и свои недостатки:
- значительная стоимость;
- необходимость больших одномоментных вложений;
- низкий КПД;
- необходимость участка для размещения;
- длительный срок возврата вложений;
- необходимость правильного обслуживания;
- сложность утилизации;
- возможность повреждения или кражи;
- снижение эффективности в пасмурную погоду.
На момент написания статьи стоимость установки оборудования на один киловатт мощности составляет приблизительно 60 тыс. рублей. Для обеспечения обычного частного дома со всеми потребностями потребуется приблизительно 15 кВт мощности. Именно такой минимальный стандарт при подключении к центральной сети. Это означает, что одномоментные вложения должны составить около 15 тыс. долларов США, что является неподъемной суммой для большинства. Кроме того, срок окупаемости может превысить гарантийный срок службы самих панелей, что довольно невыгодно. КПД солнечных систем все еще остается довольно низким, если сравнивать с традиционными источниками энергии.
Для солнечных панелей требуется определенная территория для размещения, поэтому установить их в квартире будет проблематично или практически невозможно. В частных домах вопрос решается установкой панелей на крыше или на участке. Кроме того, некоторые производители выпустили на рынок продукцию, в которой солнечные элементы вмонтированы непосредственно в черепицу. Это означает, что, перекрывая крышу, можно превратить ее в электростанцию. Солнечные батареи требуют определенного обслуживания. Заключается оно в периодической очистке и мытье поверхности батарей. Если этого не делать, то производительность падает. Особенно это касается тех случаев, когда батареи оказываются заваленными снегом. Современные элементы уже меньше подвержены этому эффекту, но основная масса снижает свою производительность в пасмурную погоду. Всегда существует вероятность, что недоброжелатели могут повредить или украсть оборудование.
Разновидности
Классификация солнечных батарей производится по различным параметрам. Одним из них являются физические особенности, по которым выделяют:
- гибкие;
- жесткие.
Гибкие конструкции представлены тонкой пленкой, которая способна принимать форму различных объектов без повреждения. Это актуально при установке солнечных элементов, например, на крыши автомобилей. Такие солнечные элементы являются более универсальными и востребованными. Жесткие солнечные панели также имеют широкое распространение, но повредить их в разы проще, чем гибкие. По типу вещества, которое осуществляет фотоэлектрический эффект выделяют-таки группы:
- кремниевые;
- на основе селена, индия, галлия;
- теллурий-кадмиевые;
- органические;
- полимерные;
- комбинированные;
- многослойные.
В определенных сферах используются все виды, но наиболее популярными для частного потребителя является первый вид солнечных батарей. Кремниевые также имеют свои подвиды:
- монокристаллические;
- поликристаллические;
- аморфные.
Из этих трех максимально востребованы два первых элемента в списке. Другие виды солнечных батарей могут отличаться более высоким КПД, но способ их способ их производства требует особых затрат, что сказывается на конечной стоимости продукции. Кремний является довольно распространенным веществом, поэтому его получение не вызывает особых трудностей. В качестве основы для производства солнечных батарей используется кварцевый порошок. Большие запасы этого вещества для солнечных батарей есть на Среднем Урале и в Западной Сибири.
Именно батареи, полученные из mono-Si, могут похвастаться наивысшим КПД. Их легко отличить по характерному темному цвету. Для таких батарей используется кремний с максимальным уровнем очистки. Стоимость таких батарей несколько выше аналогов, но это оправдано. Связано это со сложным процессом очистки и ориентирования монокристаллов. В силу такого способа расположения кристаллов есть ограничения по углу падения луча. Максимальная производительность батареи достигается при перпендикулярном направлении. Добиться этого позволяют специальные сервоприводы, которые устанавливаются на стойки с солнечными батареями. Благодаря датчикам приводы поворачивают панели в направлении солнца на протяжении всего дня.
Преимуществом по сравнению с поликристаллическими моделями можно считать большую мощность при меньшей площади и больший КПД, который может достигать 25%. Срок службы именно этих элементов достигает 25 лет. Основным недостатком солнечных панелей такого типа является падение производительности при малейшем загрязнении, а также длительный срок окупаемости. Есть также определенные условия для установки таких солнечных панелей, которые требуют открытого пространства или возвышенности, где на солнечные элементы не будет падать тень от других строений или растений.
Такие солнечные панели легко определить по окрасу, если предыдущий вариант солнечных элементов имеет однотонный окрас, то на этих солнечных элементах можно заметить неравномерно светло синий оттенок с темными пятнами. При изготовлении солнечных панелей такого типа используется кремний меньшей степени очистки. Это влияет на КПД, который в большинстве случаев составит 12%, но может быть увеличен и до 18. Преимуществом поликристаллических панелей является их большая эффективность в условиях пасмурной погоды.
Стоимость у таких солнечных панелей сравнительно ниже, чем у предыдущего варианта батарей. Это связано с тем, что в основе батарей лежит неоднородный материал. При производстве положение кристаллов кремния не подвергается строгому контролю, поэтому подготовленная основа для батарей просто заливается в предназначенные для них формы. Как только готовый материал для солнечных панелей остывает, его нарезают на элементы определенных параметров. Батареи такого типа не требуют периодического переориентирования, поэтому их можно размещать на любой доступной поверхности, обращенной к солнцу. Видео о солнечных панелях есть ниже.
Резюме
Батареи из аморфного кремния не получили такого широкого распространения, как предыдущие два варианта. Это связано с тем, что их максимальный КПД на данный момент еле приближается к 9%. Но работа по усовершенствованию этих солнечных панелей ведется и, возможно, за ними будущее, т. к. их производство в несколько раз дешевле в силу отсутствия необходимости в формировании кристаллов.
- Как правильно установить варочную панель в столешницу
- Как установить инфракрасный обогреватель самостоятельно
- Как подключить кондиционер к электросети самому
- Подключение телефонной розетки rj11, схема