Схемы включения оу

Схемы включения операционных усилителей

Типы и схемы включения операционных усилителей. Всё про обратную связь усилителей.

Операционные усилители часто используются для выполнения различных операций: суммирования сигналов, дифференцирования, интегрирования, инвертирования и т. д. А также операционные усилители были разработаны как усовершенствованные
балансные схемы усиления.

Операционный усилитель – универсальный функциональный элемент, широко используемый в современных схемах формирования и преобразования информационных сигналов различного назначения как в аналоговой, так и в цифровой технике. Давайте далее рассмотрим виды усилителей.

Рассмотрим схему простого инвертирующего усилителя:

а) падение напряжения на резисторе R2 равно Uвых,

б) падение напряжения на резисторе R1 равно Uвх.

Uвых/R2 = -Uвх/R1, или коэффициент усиления по напряжению = Uвых/Uвх = R2/R1.

Для того чтобы понять, как работает обратная связь, представим себе, что на вход подан некоторый уровень напряжения, скажем 1 В. Для конкретизации допустим, что резистор R1 имеет сопротивление 10 кОм, а резистор R2 — 100 кОм. Теперь представим себе, что напряжение на выходе решило выйти из повиновения и стало равно 0 В. Что произойдет? Резисторы R1 и R2 образуют делитель напряжения, с помощью которого потенциал инвертирующего входа поддерживается равным 0,91 В. Операционный усилитель фиксирует рассогласование по входам, и напряжение на его выходе начинает уменьшаться. Изменение продолжается до тех пор, пока выходное напряжение не достигнет значения -10 В, в этот момент потенциалы входов ОУ станут одинаковыми и равными потенциалу земли. Аналогично, если напряжение на выходе начнет уменьшаться и дальше и станет более отрицательным, чем -10 В, то потенциал на инвертирующем входе станет ниже потенциала земли, в результате выходное напряжение начнет расти.

Недостаток этой схемы состоит в том, что она обладает малым входным импедансом, особенно для усилителей с большим коэффициентом усиления по напряжению (при замкнутой цепи ОС), в которых резистор R1, как правило, бывает небольшим. Этот недостаток устраняет схема, представленная ниже, на рис. 4.

Неинвертирующий усилитель. Усилитель постоянного тока.

Рассмотрим схему на рис. 4. Анализ ее крайне прост: UA = Uвх. Напряжение UA снимается с делителя напряжения: UA = Uвых R1 / (R1 + R2). Если UA = Uвх, то коэффициент усиления = Uвых / Uвх = 1 + R2 / R1. Это неинвертирующий усилитель. В приближении, которым мы воспользуемся, входной импеданс этого усилителя бесконечен (для ОУ типа 411 он составляет 1012 Ом и больше, для ОУ на биполярных транзисторах обычно превышает 108 Ом). Выходной импеданс, как и в предыдущем случае, равен долям ома. Если, как в случае с инвертирующим усилителем, мы внимательно рассмотрим поведение схемы при изменении напряжения на входах, то увидим, что она работает, как обещано.

Усилитель переменного тока

Схема выше также представляет собой усилитель постоянного тока. Если источник сигнала и усилитель связаны между собой по переменному току, то для входного тока (очень небольшого по величине) нужно предусмотреть заземление, как показано на рис. 5. Для представленных на схеме величин компонентов коэффициент усиления по напряжению равен 10, а точке -3 дБ соответствует частота 16 Гц.

Усилитель переменного тока. Если усиливаются только сигналы переменного тока, то можно уменьшить коэффициент усиления для сигналов постоянного тока до единицы, особенно если усилитель обладает большим коэффициентом усиления по напряжению. Это позволяет уменьшить влияние всегда существующего конечного «приведенного ко входу напряжения сдвига».

Для схемы, представленной на рис. 6, точке -3 дБ соответствует частота 17 Гц; на этой частоте импеданс конденсатора равен 2,0 кОм. Обратите внимание, что конденсатор должен быть большим. Если для построения усилителя переменного тока использовать неинвертирующий усилитель с большим усилением, то конденсатор может оказаться чрезмерно большим. В этом случае лучше обойтись без конденсатора и настроить напряжение сдвига так, чтобы оно было равно нулю. Можно воспользоваться другим методом — увеличить сопротивления резисторов R1 и R2 и использовать T-образную схему делителя.

Несмотря на высокий входной импеданс, к которому всегда стремятся разработчики, схеме неинвертирующего усилителя не всегда отдают предпочтение перед схемой инвертирующего усилителя. Как мы увидим в дальнейшем, инвертирующий усилитель не предъявляет столь высоких требований к ОУ и, следовательно, обладает несколько лучшими характеристиками. Кроме того, благодаря мнимому заземлению удобно комбинировать сигналы без их взаимного влияния друг на друга. И наконец, если рассматриваемая схема подключена к выходу (стабильному) другого ОУ, то величина входного импеданса для вас безразлична — это может быть 10 кОм или бесконечность, так как в любом случае предыдущий каскад будет выполнять свои функции по отношению к последующему.

Повторитель

На рис. 7 представлен повторитель, подобный эммитерному, на основе операционного усилителя.

Он представляет собой не что иное, как неинвертирующий усилитель, в котором сопротивление резистора R1 равно бесконечности, а сопротивление резистора R2 — нулю (коэффициент усиления = 1). Существуют специальные операционные усилители, предназначенные для использования только в качестве повторителей, они обладают улучшенными характеристиками (в основном более высоким быстродействием), примером такого операционного усилителя является схема типа LM310 или OPA633, а также схемы упрощенного типа, например схема типа TL068 (она выпускается в транзисторном корпусе с тремя выводами).

Усилитель с единичным коэффициентом усиления называют иногда буфером, так как он обладает изолирующими свойствами (большим входным импедансом и малым выходным).

Основные предостережения при работе с ОУ

1. Правила справедливы для любого операционного усилителя при условии, что он находится в активном режиме, т.е. его входы и выходы не перегружены.

Например, если подать на вход усилителя чересчур большой сигнал, то это приведет к тому, что выходной сигнал будет срезаться вблизи уровня UКК или UЭЭ. В то время когда напряжение на выходе оказывается фиксированным на уровне напряжения среза, напряжение на входах не может не изменяться. Размах напряжения на выходе операционного усилителя не может быть больше диапазона напряжения питания (обычно размах меньше диапазона питания на 2 В, хотя в некоторых ОУ размах выходного напряжения ограничен одним или другим напряжением питания). Аналогичное ограничение накладывается на выходной диапазон устойчивости источника тока на основе операционного усилителя. Например, в источнике тока с плавающей нагрузкой максимальное падение напряжения на нагрузке при «нормальном» направлении тока (направление тока совпадает с направлением приложенного напряжения) составляет UКК — Uвх, а при обратном направлении тока (нагрузка в таком случае может быть довольно странной, например, она может содержать переполюсованные батареи для получения прямого тока заряда или может быть индуктивной и работать с токами, меняющими направление) -Uвх — UЭЭ.

2. Обратная связь должна быть отрицательной. Это означает (помимо всего прочего), что нельзя путать инвертирующий и неинвертирующий входы.

3. В схеме операционного усилителя обязательно должна быть предусмотрена цепь обратной связи по постоянному току, в противном случае операционный усилитель обязательно попадет в режим насыщения.

4. Многие операционные усилители имеют довольно малое предельно допустимое дифференциальное входное напряжение. Максимальная разность напряжений между инвертирующим и неинвертирующим входами может быть ограничена величиной 5 В для любой полярности напряжения. Если пренебречь этим условием, то возникнут большие входные токи, которые приведут к ухудшению характеристик или даже к разрушению операционного усилителя.

Понятие «обратная связь» (ОС) относится к числу распространенных, оно давно вышло за рамки узкой области техники и употребляется сейчас в широком смысле. В системах управления обратная связь используется для сравнения выходного сигнала с заданным значением и выполнения соответствующей коррекции. В качестве «системы» может выступать что угодно, например процесс управления движущимся по дороге автомобилем — за выходными данными (положением машиты и ее скоростью) следит водитель, который сравнивает их с ожидаемыми значениями и соответственно корректирует входные данные (с помощью руля, переключателя скоростей, тормоза). В усилительной схеме выходной сигнал должен быть кратен входному, поэтому в усилителе с обратной связью входной сигнал сравнивается с определенной частью выходного сигнала.

Всё об обратной связи

Отрицательная обратная связь — это процесс передачи выходного сигнала обратно на вход, при котором погашается часть входного сигнала. Может показаться, что это глупая затея, которая приведет лишь к уменьшению коэффициента усиления. Именно такой отзыв получил Гарольд С. Блэк, который в 1928 г. попытался запатентовать отрицательную обратную связь. «К нашему изопрелению отнеслись так же, как к вечному двигателю» (журнал IEEE Spectrum за декабрь 1977 г.). Действительно, отрицательная обратная связь уменьшает коэффициент усиления, но при этом она улучшает другие параметры схемы, например устраняет искажения и нелинейность, сглаживает частотную характеристику (приводит ее в соответствие с нужной характеристикой), делает поведение схемы предсказуемым. Чем глубже отрицательная обратная связь, тем меньше внешние характеристики усилителя зависят от характеристик усилителя с разомкнутой обратной связью (без ОС), и в конечном счете оказывается, что они зависят только от свойств самой схемы ОС. Операционные усилители обычно используют в режиме глубокой обратной связи, а коэффициент усиления по напряжению в разомкнутой петле ОС (без ОС) достигает в этих схемах миллиона.

Цепь ОС может быть частотно-зависимой, тогда коэффициент усиления будет определенным образом зависеть от частоты (примером может служить предусилитель звуковых частот в проигрывателе со стандартом RIAA); если же цепь ОС является амплитудно-зависимой, то усилитель обладает нелинейной характеристикой (распространенным примером такой схемы служит логарифмический усилитель, в котором в цепи ОС используется логарифмическая зависимость напряжения UБЭ от тока IК в диоде или транзисторе). Обратную связь можно использовать для формирования источника тока (выходной импеданс близок к бесконечности) или источника напряжения (выходной импеданс близок к нулю), с ее помощью можно получить очень большое или очень малое входное сопротивление. Вообще говоря, тот параметр, по которому вводится обратная связь, с ее помощью улучшается. Например, если для обратной связи использовать сигнал, пропорциональный выходному току, то получим хороший источник тока.

Обратная связь может быть и положительной; ее используют, например в генераторах. Как ни странно, она не столь полезна, как отрицательная ОС. Скорее она связана с неприятностями, так как в схеме с отрицательной ОС на высокой частоте могут возникать достаточно большие сдвиги по фазе, приводящие к возникновению положительной ОС и нежелательным автоколебаниям. Для того чтобы эти явления возникли, не нужно прикладывать большие усилия, а вот для предотвращения нежелательных автоколебаний прибегают к методам коррекции.

Операционные усилители

В большинстве случаев, рассматривая схемы с обратной связью, мы будем иметь дело с операционными усилителями. Операционный усилитель (ОУ) — это дифференциальный усилитель постоянного тока с очень большим коэффициентом усиления и несимметричным входом. Прообразом ОУ может служить классический дифференциальный усилитель с двумя входами и несимметричным выходом; правда, следует отметить, что реальные операционные усилители обладают значительно более высокими коэффициентами усиления (обычно порядка 105 — 106) и меньшими выходными импедансами, а также допускают изменение выходного сигнала почти в полном диапазоне питающего напряжения (обычно используют расщепленные источники питания ±15 В).

Символы «+» и «-» не означают, что на одном входе потенциал всегда должен быть более положительным, чем на другом; эти символы просто указывают относительную фазу выходного сигнала (это важно, если в схеме используется отрицательная ОС). Во избежание путаницы лучше называть входы «инвертирующий» и «неинвертирующий», а не вход «плюс» и вход «минус». На схемах часто не показывают подключение источников питания к ОУ и вывод, предназначенный для заземления. Операционные усилители обладают колоссальным коэффициентом усиления по напряжению и никогда (за редким исключением) не используются без обратной связи. Можно сказать, что операционные усилители созданы для работы с обратной связью. Коэффициент усиления схемы без обратной связи так велик, что при наличии замкнутой петли ОС характеристики усилителя зависят только от схемы обратной связи. Конечно, при более подробном изучении должно оказаться, что такое обобщенное заключение справедливо не всегда. Начнем мы с того, что просто рассмотрим, как работает операционный усилитель, а затем по мере необходимости будем изучать его более тщательно.

Промышленность выпускает буквально сотни типов операционных усилителей, которые обладают различными преимуществами друг перед другом. Повсеместное распространение получила очень хорошая схема типа LF411 (или просто «411»), представленная на рынок фирмой National Semiconductor. Как и все операционные усилители, она представляет собой крошечный элемент, размещенный в миниатюрном корпусе с двухрядным расположением выводов мини-DIP. Эта схема недорога и удобна в обращении; промышленность выпускает улучшенный вариант этой схемы (LF411A), а также элемент, размещенный в миниатюрном корпусе и содержащий два независимых операционных усилителя (схема типа LF412, которую называют также «сдвоенный» операционный усилитель). Рекомендуем вам схему LF411 в качестве хорошей начальной ступени в разработке электронных схем.

Схема типа 411 — это кристалл кремния, содержащий 24 транзистора (21 биполярный транзистор, 3 полевых транзистора, 11 резисторов и 1 конденсатор). На рис. 2 показано соединение с выводами корпуса.

Точка на крышке корпуса и выемка на его торце служат для обозначения точки отсчета при нумерации выводов. В большинстве корпусов электронных схем нумерация выводов осуществляется в направлении против часовой стрелки со стороны крышки корпуса. Выводы «установка нуля» (или «баланс», «регулировка») служат для устранения небольшой асимметрии, возможной в операционном усилителе.

Важные правила

Сейчас мы познакомимся с важнейшими правилами, которые определяют поведение операционного усилителя, охваченного петлей обратной связи. Они справедливы почти для всех случаев жизни.

Во-первых, операционный усилитель обладает таким большим коэффициентом усиления по напряжению, что изменение напряжения между входами на несколько долей милливольта вызывает изменение выходного напряжения в пределах его полного диапазона, поэтому не будем рассматривать это небольшое напряжение, а сформулируем правило I:

I. Выход операционного усилителя стремится к тому, чтобы разность напряжений между его входами была равна нулю.

Во-вторых, операционный усилитель потребляет очень небольшой входной ток (ОУ типа LF411 потребляет 0,2 нА; ОУ со входами на полевых транзисторах — порядка пикоампер); не вдаваясь в более глубокие подробности, сформулируем правило II:

II. Входы операционного усилителя ток не потребляют.

Здесь необходимо дать пояснение: правило I не означает, что операционный усилитель действительно изменяет напряжение на своих входах. Это невозможно. (Это было бы не совместимо с правилом II.) Операционный усилитель «оценивает» состояние входов и с помощью внешней схемы ОС передает напряжение с выхода на вход, так что в результате разность напряжений между входами становится равной нулю (если это возможно).

Эти правила создают достаточную основу для рассмотрения схем на операционных усилителях.

Метки:


П О П У Л Я Р Н О Е:

  • Бесплатная программа для перевода единиц
  • Со школьной скамьи мы постоянно сталкиваемся с разными единицами измерения: скорость, длина, масса, площадь, углы и т.д. Все эти величины могут быть выражены в величинах, нам не понятных. Поэтому хорошо иметь таблицу, а ещё лучше специальную программу для перевода из одной величины в другую.

    Бесплатная программа Metrix, представленная ниже переводит различные единицы измерения: скорость, длина, объём, масса, углы, площадь, температура, давление, мощность и энергия.

    Подробнее…

  • Краткие характеристики импортных диодов
  • Диод — один из самых популярных элементов в радиоаппаратуре. Справочник по импортным диодам поможет вам быстро найти подходящую замену при неимении оригинала. Вы сможете быстрее устранить неисправность в современной аппаратуре и вернуть её к «жизни».

    Подробнее…

  • Цветовая маркировка стабилитронов.
  • Цветовая маркировка стабилитронов.

    Подробнее…

— н а в и г а т о р —

» позже Схема ограничения тока Как заменить магнетрон в микроволновке? раньше »

Популярность: 22 526 просм.

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ

Прошлая статья открыла цикл статей про строительные кирпичики современной аналоговой электроники – операционные усилители. Было дано определение ОУ и некоторые параметры, также приведена классификация операционных усилителей. Данная статья раскроет такое понятие как идеальный операционный усилитель, и будут приведены основные схемы включения операционного усилителя.

Идеальный операционный усилитель и его свойства

Так как наш мир не является идеальным, так и идеальных операционных усилителей не существует. Однако параметры современных ОУ находятся на достаточно высоком уровне, поэтому анализ схем с идеальными ОУ даёт результаты, очень близкие к реальным усилителям.

Для понимания работы схем с операционными усилителями вводится ряд допущений, которые приводят реальные операционные усилители к идеальным усилителям. Таких допущений всего пять:

  1. Ток, протекающий через входы ОУ, принимается равным нулю.
  2. Коэффициент усиления ОУ принимается бесконечно большим, то есть выходное напряжение усилителя может достичь любых значений, однако в реальность ограничено напряжением питания.
  3. Разность напряжений между входами идеального ОУ равна нулю, то есть если один из выводов соединён с землёй, то и второй вывод имеет такой же потенциал. Отсюда также следует, что входное сопротивление идеального усилителя бесконечно.
  4. Выходное сопротивление идеального ОУ равно нулю.
  5. Амплитудно-частотная характеристика идеального ОУ является плоской, то есть коэффициент усиления не зависит от частоты входного сигнала.

Близость параметров реального операционного усилителя к идеальным определяет точность, с которой может работать данный ОУ, а также выяснить ценность конкретного операционного усилителя, быстро и правильно сделать выбор подходящего ОУ.

Исходя из вышеописанных допущений, появляется возможность проанализировать и вывести соотношения для основных схем включения операционного усилителя.

Неинвертирующий усилитель

Неинвертирующий усилитель характеризуется тем, что входной сигнал поступает на неинвертирующий вход операционного усилителя. Данная схема включения изображена ниже



Схема включения неинвертирующего усилителя.

Работа данной схемы объясняется следующим образом, с учётом характеристик идеального ОУ. Сигнала поступает на усилитель с бесконечным входным сопротивлением, а напряжение на неинвертирующем входе имеет такое же значение, как и на инвертирующем входе. Ток на выходе операционного усилителя создает на резисторе R2 напряжение, равное входному напряжению.

Таким образом, основные параметры данной схемы описываются следующим соотношением



Отсюда выводится соотношение для коэффициента усиления неинвертирующего усилителя



Таким образом, можно сделать вывод, что на коэффициент усиления влияют только номиналы пассивных компонентов.

Необходимо отметить особый случай, когда сопротивление резистора R2 намного больше R1 (R2 >> R1), тогда коэффициент усиления будет стремиться к единице. В этом случае схема неинвертирующего усилителя превращается в аналоговый буфер или операционный повторитель с единичным коэффициентом передачи, очень большим входным сопротивлением и практически нулевым выходным сопротивлением. Что обеспечивает эффективную развязку входа и выхода.

Логарифмирующий преобразователь

Одной из схем на операционном усилителе, которые нашли применение, является логарифмирующий преобразователь. В данном схеме используется свойство диода или биполярного транзистора. Схема простейшего логарифмического преобразователя представлена ниже


Логарифмирующий преобразователь.

Данная схема находит применение, прежде всего в качестве компрессора сигналов для увеличения динамического диапазона, а так же для выполнения математических функций.

Рассмотрим принцип работы логарифмического преобразователя. Как известно ток, протекающий через диод, описывается следующим выражением



где IO – обратный ток диода,
е – число е, основание натурального логарифма, e ≈ 2,72,
q – заряд электрона,
U – напряжение на диоде,
k – постоянная Больцмана,
T – температура в градусах Кельвина.

При расчётах можно принимать IO ≈ 10-9 А, kT/q = 25 мВ. Таким образом, входной ток данной схемы составит


тогда выходное напряжение


Простейший логарифмический преобразователь практически не используется, так как имеет ряд серьёзных недостатков:

  1. Высокая чувствительность к температуре.
  2. Диод не обеспечивает достаточной точности преобразования, так как зависимость между падением напряжения и током диода не совсем логарифмическая.

Вследствие этого вместо диодов применяют транзисторы в диодном включении или с заземлённой базой.

Экспоненциальный преобразователь

Схема экспоненциального преобразователь получается из логарифмического преобразователя путём перемены места диода и резистора в схеме. А работа такой схемы так же как и логарифмического преобразователя основана на логарифмической зависимости между падение напряжения на диоде и током протекающим через диод. Схема экспоненциального преобразователя показана ниже


Экспоненциальный преобразователь.

Работа схемы описывается известными выражениями




Таким образом, выходное напряжение составит


Также как и логарифмический преобразователь, простейший экспоненциальный преобразователь с диодом на входе применяют редко, вследствие вышеописанных причин, поэтому вместо диодов на входе используют биполярные транзисторы в диодном включении или с общей базой.

Схемы включения операционных усилителей, описанные выше, не являются исчерпывающими, а лишь только призваны дать основные понятия. Более подробно схемы включения операционных усилителей я рассмотрю в следующих статьях. Всем удачи.

Теория это хорошо, но без практического применения это просто слова.

Принципиальная схема

И в музыкальный сигнал, поступающий от CD-плеера добавить голос певца или диктора. В схеме имеется регулятор уровня сигнала микрофона, которым можно плавно сделать вставку речевого сигнала с нарастанием звука, выбрать оптимальный уровень речевого сигнал над музыкальным. Микрофонный усилитель выполнен в виде самостоятельного узла, питающегося от источника постоянного тока напряжением от 9 до 15V.

Рис. 1. Принципиальная схема самодельного микрофонного предусилителя-микшера на ОУ.

Стереомикрофон подключается к разъемам Х1 и Х2. Он состоит из двух электретных микрофонов. Питание на них поступает через резисторы R1 и R13. Эти же резисторы служат и нагрузками электретный микрофонов.

Следующий этап — усиление и установка уровня аудиосигнала, поступающего от микрофона. Этим занимаются операционные усилители А1 и АЗ. Любопытная особенность данной схемы в том, что регулировка уровня сигналов микрофона осуществляется не при помощи потенциометра, изменяющего напряжение, проходящее с микрофона, а при помощи цепей ООС операционных усилителей.

Достоинство такого решения в том, что не возникает излишнего усиления, и сигнал с выхода микрофона не ослабляется. А это значит, что меньше шумов, склонности к самовозбуждению и приему наводок и помех на вход усилителя, так как коэффициент передачи усилителя всегда установлен таким как нужен, без излишнего запаса.

Регулировка коэффициента передачи осуществляется с помощью двойного переменного резистора R3, секции которого включены между инверсными входами ОУ А1 и АЗ и их выходами. Вращая роторы этого переменного резистора мы одновременно регулируем глубину ООС усилителей, а значит, и регулируем их коэффициент передачи.

И так, сигнал от микрофона усилен, теперь его нужно ввести в линейный сигнал, поступающий от источника сигнала. Аудиосигнал от источника подается на разъем ХЗ. Здесь используется трехконтактныое гнездо для стереосигнала, но можно сделать два отдельных гнезда азиатского стандарта или установитъ гнездо типа СГ, все зависит от конструкции используемых кабелей.

В моем случае для подключения был использован кабель для подачи аудио* сигнала на компьютерную аудиокарту, потому и разъем ХЗ имеет такую конструкцию (аналогичную конструкцию имеет и выходной разъем Х4, что опять же, не критично).

Сигнал с линейного входа (ХЗ) поступает на инверсный вход ОУ А2 и А4 через резисторы R9 и R10. Туда же поступает и сигнал с выхода микрофонного усилителя, — через резисторы R4 и R16. Коэффициенты передачи усилителей на ОУ А2 и А4 установлен равным единице.

Эти каскады не усиливают сигнал, а осуществляют функции микшера, вводя сигнал от стереомикрофона в сигнал, поступающий от источника.

Конденсаторы СЗ, С5, С12 и С15 снижают усиление на ВЧ выше звукового спектра и снижают вероятность возникновения само-возбухщения по ВЧ. Данная схема питается однополярным напряжением.

Для того чтобы обеспечить работу операционных усилителей в схеме имеется источник «искусственной земли», который создает напряжение, равное половине напряжения питания, и подает его на прямые входы всех ОУ. Данный источник состоит из делителя напряжения питания на два, созданный на резисторах R11 и R12, а также, конденсаторах С8 и С9. исключающих появление в этой точке каких-то переменных напряжений, сигнала или помех.

1.1. Краткие теоретические сведения

Аналоговый компаратор (компаратор) – это устройство осуществляющее сравнение измеряемого входного напряжения (uвх) с опорным напряжением (UОП), подаваемых одновременно на его входы. Опорное напряжение представляет собой неизменное по величине напряжение положительной или отрицательной полярности, входное напряжение изменяется во времени. При достижении входным напряжением уровня опорного напряжения происходит переключение выходного напряжения компаратора с одного уровня на другой. Компаратор часто называют нуль – органом, поскольку его переключение происходит при

Компараторы нашли применение в системах автоматического управления, в измерительной технике, а также для построения различных устройств импульсного и цифрового действия (в частности, аналогово-цифровых (АЦП) и цифро-аналоговых (ЦАП) преобразователей)

Простейшая схема компаратора может быть построена на ОУ (рис. 1.1а).

Импульсный режим работы операционного усилителя.

Интегральные операционные усилители (ОУ) находят широкое применение в импульсной технике. Уровни входного сигнала ОУ в импульсном режиме работы превышают значения, соответствующие линейной области А0В амплитудной характеристики (см. рис. 1.1б). В связи с этим выходное напряжение ОУ в процессе работы определяется либо напряжением U+вых max, либо U-вых max.

Рис. 1.1. Схематическое изображение операционного усилителя (а) и его передаточная характеристика (б).

При рассмотрении линейных устройств на ОУ мы ранее ограничивались рассмотрением линейного участка передаточной характеристики при (- входное напряжение, при которомUВЫХ достигает максимального значения). При выходное напряжение ОУ ограничено значениямиU+вых max, либо U-вых max так как транзисторы выходных каскадов при больших сигналах работают в ключевом режиме (Uвых max несколько меньше UП).

Таким образом, получаем, что при UВХ2 – UВХ1 > 0 (т. е. UВХ2 > UВХ1) Uвых = U+вых max, а при UВХ2 – UВХ1 < 0 Uвых = U- вых max. Полярность выходного напряжения ОУ при зависит от того какое из двух входных напряжений больше. Или, иными словами, ОУ является в этом случае схемой сравнения (компаратором). Если положить, чтоUВХ2 = const, то при достижении напряжением UВХ1 уровня напряжения UВХ2 происходит изменение полярности напряжения на выходе ОУ, например с U+вых max на

U- вых max. При UВХ2 = 0 схема осуществляет фиксацию момента перехода напряжения UВХ1 через ноль.

Так как коэффициент усиления по напряжению ОУ КU весьма велик, то

весьма мало. Реально у операционных усилителей UВХН не превышает нескольких милливольт, поэтому ОУ можно применять для сравнения двух напряжений с высокой точностью.

Простейшая схема компаратора на ОУ приведена на рис. 1.2 а. Её характеризует симметричное подключение измеряемого и опорного напряжений ко входам ОУ. Разность напряжений uВХ – UОП является входным напряжением u0 ОУ, что и определяет передаточную характеристику компаратора (рис. 1.2 б). При uВХ < UОП напряжение u0 < 0, в связи с чем uвых = U+вых max. При uВХ > UОП напряжение u0 > 0 и uвых = Uвых max.

Изменение полярности выходного напряжения происходит при переходе входного измеряемого напряжения через значение UОП. Ввиду большого значения коэффициента усиления ОУ это изменение носит ступенчатый характер при u0 = uВХ – UОП 0. Если источники входного и опорного напряжений в схеме рис. 1.2 а поменять местами или изменить полярность их подключения, то произойдёт инверсия передаточной характеристики компаратора. УсловиюuВХ < UОП будет отвечать равенство uвых = U-вых max, а условию uВХ > UОП — uвых = U+вых max.

Схема рис. 1.2 а применима тогда, когда измеряемое и опорное напряжения не превышают допустимых паспортных значений входных напряжений ОУ. В противном случае они подключаются к ОУ с помощью делителей напряжения (рис.1.2 в).

Операционный усилитель не может мгновенно перейти от одного уровня насыщения выходного каскада к другому, поэтому переключение с уровня напряжения U+вых max на уровень U-вых max происходит с некоторой задержкой зад (рис. 1.3).

Рис. 1.2. Схема компаратора на операционном усилителе (а), его передаточная характеристика (б), схема компаратора с входными делителями напряжения (в).

Важнейшим показателем ОУ, работающих в импульсном режиме, является их быстродействие , которое оценивается задержкой срабатывания и временем нарастания выходного напряжения. Задержка срабатывания (время задержки выходного импульса) ОУ общего применения составляет единицы микросекунд, а время нарастания выходного напряжения — доли микросекунды.

Лучшим быстродействием обладают специализированные ОУ, предназначенные для импульсного режима работы и получившие общее название «компараторы».

Рис. 1.3. Временная зависимость напряжения на выходе компаратора при линейно нарастающем входном сигнале.

Регенеративный компаратор (триггер Шмитта).

Ввиду большого значения коэффициента усиления ОУ и, как следствие, малой величины , при наличии зашумленности (флюктуации уровня сигнала) сигналов, подаваемых на входы компаратора, в момент равенства входного и опорного сигналов компаратор может многократно изменять своё состояние (переключаться). Это явление называют «дребезгом» компаратора. Для исключения этого явления ОУ компаратора охватывают положительной обратной связью, осуществляемой по неинвертирующему входу с помощью резисторовR1 и R2 (рис. 1.4 а).

Рис. 1.4. Схема компаратора с положительной обратной связью (а) и его идеализированная передаточная характеристика. (б).

Такой компаратор обладает передаточной характеристикой с гистерезисом (рис. 1.4 б). Переключение схемы в состояние U-вых max происходит при достижении uвх напряжения (порога) срабатывания UСР, а возвращение в исходное состояние uвых = U+выхmax – при снижении uвх до напряжения (порога) отпускания UОТП. Значения пороговых напряжений находят положив u0 = 0; схема, очевидно, обладает передаточной характеристикой с гистерезисом. Переход из одного состояния в другое происходит скачкообразно под действием положительной обратной связи (ПОС). Действительно при превышении напряжением uвх напряжения срабатывания Uср выходное напряжение начнёт уменьшаться, так как uвх подается по инверсному входу ОУ. Отрицательное приращение uвых по цепи ПОС R2, R1 поступит на неинвертирующий вход ОУ, который его усилит, что приведёт к дополнительному уменьшению uвых, т. е. появиться дополнительное отрицательное приращение uвых, которое вновь уменьшит напряжение на неинвертирующем входе ОУ. Процесс идёт лавинообразно. Значения пороговых напряжений Uср и Uотп находят по схеме, положив u0 = 0:

(1.1)

, (1.2)

Откуда ширина зоны гистерезиса

. (1.3)

Таким образом, Uср и Uотп различны. Ширина гистерезиса UГ растет с ростом отношения R1/R2. ПОС, как было показано, приводит к регенеративным процессам, тем самым ускоряет процессы переключения.

Возможна работа компаратора с ПОС при UОП = 0 (рис. 1.5 а). Данная схема является частным случаем предыдущей схемы (рис. 1.4 а). Передаточная характеристика такого компаратора становиться симметричной относительно оси ординат, т. е. смещается влево так, что

UОП = 0 (рис. 1.5 б).

Рис. 1.5. Схема компаратора с положительной обратной связью и нулевым опорным напряжением (а), его передаточная характеристика (б).

Её пороговые напряжения и зона гистерезиса (рис. 1.5 б) составляют:

UСР = ,и, где.

Схема рис. 1.5 а служит основой при построении генератора импульсов на ОУ.

Как работает компаратор на операционном усилителе(ОУ).

Прежде чем начнём разбираться с компаратором, давайте вспомним, что такое операционный усилитель(ОУ). Операционный усилитель имеет пять выводов и на схемах обозначается треугольником, как показано на рисунке ниже.

Давайте подробнее рассмотрим назначение выводов:

  • два вывода для подключения питания, плюс и минус напряжения питания;
  • два входа, один неинвертирующий, обозначенный V+ и один инвертирующий, обозначенный V-;
  • один выход, обозначенный Vвых;

Скорее всего, у того кто до этого не был знаком с операционным усилителем возникнет вопрос, что такое инвертирующий и неинвертирующий вход, давайте рассмотрим это на примере.
На рисунке выше видно, что если напряжение на неинвертирующем входе больше чем на инвертирующем, то на выходе будет плюс напряжение питания.
Если, наоборот, напряжение на инвертирующем входе будет больше чем на неинвертирующем, то на выходе будет минус напряжение питания.
По сути мы рассмотрели как работает компаратор. Компаратор от английского слова compare – сравнить, то есть он сравнивает два напряжения и в зависимости от того на каком из входов оно выше, устанавливает на выходе плюс или минус напряжения питания. Также, можно сказать, что компаратор — это схема включения ОУ без отрицательной обратной связи, обладающая большим коэффициентом усиления. Под отрицательной обратной связью понимают, соединение инвертирующего входа с выходом, напрямую или через электронный компонент, например, резистор, кондесатор или диод.
Для демонстрации, того как работает компаратор рассмотрим схему, изображённую ниже.
В этой схеме с помощью делителя, резисторами 10К и 100К, устанавливается на инвертирующем входе напряжение 0,45V, его ещё называют опорным. Пока напряжение на неинвертирующем входе меньше 0,45V, на выходе будет 0V и светодиод не загорится, как только напряжение на неинвертирующем входе превысит это значение, на выходе станет 5V и светодиод загорится. Таким образом, вращая потенциометр, мы можем зажигать и гасить светодиод. Схема непрактичная, но наглядная.
В одной из статей описывается как работает пиковый детектор, там как раз можно увидеть ОУ включённый как компаратор. Для увеличения можно кликнуть по фото.

Давайте немного упростим схему.

И подключим осциллограф к входам компаратора. Первый канал — неинвертирующий вход, второй — инвертирующий.
Во время хлопков в ладоши возникают всплески, если при этом амплитуда всплесков(жёлтые) превышает опорное напряжение(бирюзовый), на выходе появляется плюс напряжения питания, иначе минус.
В этом случае в качестве датчика у нас выступает микрофон, также в качестве датчика может выступать фотодиод, для включения света при низком уровне освещенности, а его мы задаем опорным напряжением.
Ранее, мы договорились, что компаратор — это схема включения ОУ без отрицательной обратной связи. Но кроме отрицательной обратной связи существует, ещё положительная обратная связь.
Схема, изображенная выше, называется инвертирующий триггер Шмитта, по сути это тот же компаратор, только с положительной обратной связью. Принцип его работы заключается в следующем, помните на осциллограмме когда жёлтые линии пересекали бирюзовую, изменялось напряжение на выходе. Так вот здесь линий, которые можно пересечь две, при превышении верхней линии на выходе появляется минус напряжения питания, если значение опустится ниже нижней линии —плюс, а в промежутке между линиями система сохраняет своё состояние.
Так же существует неинвертирующий триггер Шмитта, он изображен на схеме ниже.
Логичным вопросом будет, почему того же Отто Герберт Шмитт не устроил обычный компаратор и он изобрел свой. Ответ прост, если на вход компаратора без положительной обратной связи подать зашумленный сигнал, это вызовет множество ложных срабатываний, для того чтобы избежать этого был придуман триггер Шмитта, у которого два порога переключения.
Правда и у него тоже есть, что доработать. Хотелось бы избавиться от двуполярного питания и так как пороги срабатывания задаются с помощью делителя, то они симметричны относительно нуля, а хотелось бы выбирать их произвольно.
Пожалуй это всё, что хотелось рассказать про компараторы на ОУ, если появилось желание разобраться более подробно, добро пожаловать сюда.

This entry was posted in Ремонт. Bookmark the <a href="https://kabel-house.ru/remont/shemy-vklyucheniya-ou/" title="Permalink to Схемы включения оу" rel="bookmark">permalink</a>.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *