Релейная защита и автоматика

Содержание

Назначение и эволюция

Первые средства, предназначенные для аварийного отключения нагрузки, применялись ещё на заре появления электроэнергии. Например, биографы Эдисона упоминали об одном интересном случае. В начале своего существования компания американского изобретателя производила электричество исключительно для освещения, таким образом создавая жёсткую конкуренцию с владельцами предприятий по производству топлива для газовых фонарей.

На одну из выставок они послали диверсантов, которые должны были устроить короткое замыкание на демонстрационном образце Эдисона с целью доказать публике ненадёжность новшества. Но включённые в цепь предохранители сработали, а затем были быстро и без труда заменены, что, наоборот, продемонстрировало сравнительную лёгкость и безопасность обращения с проводкой.

В настоящее время вместо предохранителей используется сложный комплекс из защитных средств/ Назначение релейной защиты и автоматики — мгновенное обнаружения отклонений от штатных режимов в работе и немедленной изоляции аварийных компонентов от сети. Термин «релейная защита» в автоматике систем энергоснабжения — также выражение, применяемое лишь по традиции. Современные системы, контролирующие работу электрических установок, представляют собой сложные многофункциональные электронные устройства, а не набор электромеханических реле.

Суть релейной защиты и автоматики систем электроснабжения для чайников можно объяснить так: РЗиА не просто мускулы для обесточивания элементов согласно контрольным сигналам, а прежде всего, интеллектуальная система, непрерывно мониторящая энергетический комплекс на угрозу аварии и принимающая решение о необходимости тех или иных коммутаций.

Поэтому выбор типа и марки оборудования — сравнительно лёгкая часть в работе специалистов по РЗА (релейной защите и автоматизации электрических систем). Их основной задачей является анализ вероятных чрезвычайных ситуаций и правильной конфигурации элементов контроля и коммутации.

Требования к защите

Предмет мониторинга для комплексов РЗиА — отклонения в работе силового электрооборудования. Их разделяют на 2 вида:

  1. Повреждения. Основная причина — короткие замыкания и заземление фаз. Как правило, повреждение одного узла приводит к нарушениям работы остальной системы.
  2. Ненормальные режимы. К ним относят все недопустимые отклонения от эталонных показателей работы элементов при отсутствии повреждений.

Повреждения и ненормальные режимы создают благоприятные условия для поломки или ускоренного износа электрооборудования, и процессы могут происходить очень быстро, буквально за миллисекунды. Поэтому своевременное обнаружение и правильная реакция систем контроля крайне важна для сохранения работоспособности всей системы. Поэтому существуют требования к релейной защите, на основании которой проектируется РЗиА систем энергоснабжения.

Надёжность и простота

Надёжность систем защиты — основное требование, определяющее безотказную работу всей энергетической системы. В упрощённом виде требование означает, что система защиты должна быть готова правильно функционировать в любое время и при любых неисправностях и ненормальных режимах работы энергосистемы, для которой она предназначена. Надёжность — количественный термин, определяемый статистическими данными. С ростом числа подключений и соединений, генераторов и трансформаторов требования к надёжности повышаются. Показатель достигается за счёт:

  • удобства в монтаже;
  • высокого качества контактов;
  • пылезащищённости корпусов;
  • применения качественных материалов для контактных групп;
  • высокого качества изготовления;
  • тщательного обслуживания и ухода.

Простота напрямую связана с надёжностью. Как правило, чем проще защитная схема и меньше в ней элементов, тем выше будет её надёжность. То же самое касается датчиков контроля и анализа.

Избирательность (селективность) и чувствительность

Избирательностью называют способность защиты безошибочно выбрать аварийную часть системы и изолировать неисправный элемент, не нарушая функционирование остальных. Качественная спроектированная и эффективная РЗА в состоянии верно отреагировать на сбой, не допуская обесточивания элементов без необходимости. Чувствительностью РЗА называют наименьшее значение величины, приводящей её в действие, при которой она включается в работу из-за появления тока короткого замыкания в зоне контроля.

На описанные параметры влияют такие факторы:

  • погрешности измерений;
  • погрешности в настройках;
  • точность самих реле;
  • окружающая среда;
  • параметры расчёта неопределённости.

Факторы безопасности и чувствительности являются специфичными для каждого объекта. Ограничения могут корректироваться, например, требованиями к устойчивости работы или возможностями переключения на резервные источники питания. Контуры с высокой степенью чувствительности всегда относительно сложны, состоят из большого количества оборудования и недешевы. Подобная защита используется только в тех случаях, когда простые механизмы не могут быть применены по причине низкой чувствительности.

Быстродействие работы

Быстродействие заключается в скорости выявления и отключения аварийных элементов системы. Современные реле защиты делают это за промежуток времени меньший, чем один период промышленной частоты. Скорость крайне важна как фактор, позволяющий добиться:

  • сокращения ущерба;
  • повышения устойчивости систем электроснабжения;
  • сокращения прерывания для потребителей;
  • снижения вероятности развития одной неисправности в другую;

Однако существуют такие повреждения, при которых применяется преднамеренная задержка для получения необходимой селективности, достигающая нескольких секунд.

Цифровые электронные системы

В настоящее время в работе находится немало систем, спроектированных и смонтированных десятки лет назад на основе простейших электромагнитных реле. Такая ситуация связана с длительным сроком службы и удовлетворительной надёжностью электромеханических устройств. Системы последних поколений производятся на базе электроники и цифровой техники. К их преимуществам можно отнести множество отличий от классических:

  • содержат в себе меньше измерительных трансформаторов и позволяют использовать линейные преобразователи, такие как оптические трансформаторы тока и делители напряжения;
  • обладают небольшим энергопотреблением в режиме контроля;
  • предлагают большую точность и гибкость настроек;
  • оснащены качественными интерфейсами и пультами дистанционного управления;
  • как правило, дешевле при равных функциональных возможностях с электромеханическими.

Защита становится всё более сложной. Для неё разрабатывается специализированное программное обеспечение, и она строится на модульной основе. Современные продукты предполагают возможность коммуникации через интернет (в том числе и беспроводную) и программирование по USB. Конечно, использование высокотехнологичных защит предполагает обслуживание и поддержку от квалифицированных специалистов. В большинстве случаев проектирования и монтажа речь идёт о комплексном пакете, включающем оборудование, устройство его на месте работы, программирование и техническое обслуживание.

Согласно требованием ПТЭ, силовое оборудование электростанций, подстанций и электрических сетей должно быть защищено от коротких замыканий и нарушений нормальных режимов работы устройствами релейной защиты и электроавтоматики. Устройства РЗА должны быть постоянно включены, кроме устройств, которые должны выводиться из работы в соответствии с назначением и принципом действия, режимом работы энергосистемы и условиями селективности. Устройства аварийной и предупредительной сигнализации должны быть всегда готовы к действию. Свое название релейная защита получила от названия основного элемента схем защиты – реле.

Назначение релейной защиты и электроавтоматики

Как уже говорилось ранее при эксплуатации энергетического оборудования и электрических сетей неизбежны их повреждения и не нормальные режимы. Наиболее опасными являются короткие замыкания, повреждения изоляции и перегрузки. Короткие замыкания возникают из-за пробоя или перекрытия изоляции, обрывов проводов, ошибочных действий персонала (включения под напряжение заземленного оборудования, отключения разъединителей под нагрузкой) и других причин. В большинстве случаев в месте КЗ возникает электрическая дуга, термическое действие которой приводит к разрушениям токоведущих частей, изоляторов и электрических аппаратов. При КЗ к месту повреждения подходят большие токи (токи КЗ), измеряемые тысячами ампер, которые перегревают неповрежденные токоведущие части и могут вызвать дополнительные повреждения, т. е. развитие аварии. Одновременно в сети, электрически связанной с местом повреждения, происходит глубокое понижение напряжения, что может привести к остановке электродвигателей и нарушению параллельной работы генераторов. В большинстве случаев развитие аварий может быть предотвращено быстрым отключением поврежденного участка электрической установки или сети при помощи специальных автоматических устройств, действующих на отключение выключателей, и. получивших название релейная защита. При отключении выключателей поврежденного элемента гаснет электрическая дуга в месте КЗ, прекращается прохождение тока КЗ и восстанавливается нормальное напряжение на неповрежденной части электрической установки или сети. Благодаря этому минимизируются, или даже совсем предотвращаются повреждения оборудования, на котором возникло КЗ, а также восстанавливается нормальная работа неповрежденного оборудования. Таким образом, основным назначением релейной защиты является выявление места возникновения КЗ и быстрое автоматическое отключение выключателей поврежденного оборудования или участка сети от остальной неповрежденной части электрической установки или сети. Кроме повреждений электрического оборудования могут возникать такие нарушения нормальных режимов работы, как перегрузка, замыкание на землю одной фазы в сети с изолированной нейтралью, выделение газа в результате разложения масла в трансформаторе, или понижение уровня масла в его расширителе и др. В указанных случаях нет необходимости немедленного отключения оборудования, так как эти явления не представляют непосредственной опасности для оборудования и могут самоустраниться. Поэтому при нарушении нормального режима работы на подстанциях с постоянным обслуживающим персоналом, как правило, достаточно дать предупредительный сигнал персоналу подстанции. На подстанциях без постоянного обслуживающего персонала и в отдельных случаях на подстанциях с постоянным обслуживающим персоналом производится отключение оборудования, но обязательно с выдержкой времени. Таким образом, вторым назначением релейной защиты является выявление нарушений нормальных режимов работы оборудования, которые могут привести к аварии, и подача предупредительных сигналов обслуживающему персоналу, или отключение оборудования с выдержкой времени.
Согласно требованием ПТЭ, силовое оборудование электростанций, подстанций и электрических сетей должно быть защищено от коротких замыканий и нарушений нормальных режимов работы устройствами релейной защиты и автоматики. Устройства РЗиА должны быть постоянно включены, кроме устройств, которые должны выводиться из работы в соответствии с назначением и принципом действия, режимом работы энергосистемы и условиями селективности. Устройства аварийной и предупредительной сигнализации должны быть всегда готовы к действию. Свое название релейная защита получила от названия основного элемента схем защиты – реле. Историки утверждают, что реле впервые было разработано и построено русским ученым П.Л. Шиллингом в 1830-1832 гг. Это реле составляло основную часть вызывного устройства в разработанном им телеграфе. Первенство оспаривает известный физик Генри (его именем названа единица индуктивности), который сконструировал реле в 1835 году. В 1837 году аппарат получил применение в телеграфии, в связи с чем и получил название «реле», что в переводе с французского означало «перекладные лошади». В настоящее время термином реле обозначается широкая группа автоматических приборов и устройств, используемых в релейной защите, автоматике, телемеханике, телеграфии, телефонии и других отраслях техники. В отрасли релейной защиты термином реле обычно обозначают автоматически действующее устройство, производящее скачкообразное изменение (так называемое релейное действие) в управляющей системе при заданном изменении контролируемых параметров. Так, например, реле максимального тока при увеличении тока в контролируемой цепи (куда включена токовая обмотка этого реле) до заданного значения, называемого током срабатывания, замыкает своими контактами управляемую цепь. Под устройством релейной защиты подразумевается совокупность реле, приборов и вспомогательных элементов, которые при возникновении повреждений и ненормальных режимов работы оборудования должны действовать на его отключение или на сигнал.

Классификация реле защиты

По способу подключения реле бывают:

  • Первичные (прямое включение в цепь защищаемого элемента).
  • Вторичные (включение через измерительные трансформаторы тока, напряжения).

По исполнению реле бывают:

  • Электромеханические, с подвижными элементами и контактными системами.
  • Статические, без подвижных элементов и контактов (электронные,
    микропроцессорные).

По назначению реле подразделяются на:

  • Измерительные реле (тока, напряжения, сопротивления, мощности, частоты,
    температуры,
    уровня) могут быть максимальные или минимальные.
  • Логические реле (промежуточные, двухпозиционные, времени, сигнальные).

Для измерительных реле характерно наличие опорных (образцовых) элементов в виде калиброванных пружин, источников стабильного напряжения, тока и т.п. Они входят в состав реле и воспроизводят заранее установленные значения (называемые уставкой) какой-либо физической величины, с которой сравнивается контролируемая величина. Измерительные реле обладают высокой чувствительностью (воспринимают даже не значительные изменения контролируемого параметра) и имеют высокий коэффициент возврата (отношение величины срабатывания и возврата). Максимальные реле срабатывают при повышении контролируемого параметра, а минимальные – при понижении. Логические реле служат для размножения импульсов, полученных от других реле, усиления этих импульсов и передачи команд другим аппаратам (промежуточные реле), создания выдержек времени между отдельными операциями (реле времени), и для регистрации действия как самих реле, так и других вторичных аппаратов (указательные реле).

По способу воздействия на выключатель:

  • Реле прямого действия подвижная система которых механически связана с
    отключающим
    устройством коммутационного аппарата (РТМ, РТВ).
  • Реле косвенного действия, которые управляют цепью электромагнита отключения.

Первичные реле подключаются непосредственно к главной электрической цепи. Вторичные реле подключаются к главной электрической цепи через измерительные трансформаторы (тока, напряжения). Выносные реле наиболее часто используют для защиты сетей напряжением выше 1 кВ. Встроенные защиты являются составными частями выключателей или их приводов. Защита, встроенная в автоматический выключатель напряжением до 1 кВ и действующая непосредственно на его отключение, называется расцепителем. Выносные защиты выполняются с помощью отдельных реле. Реле прямого действия действуют
непосредственно на отключение выключателя, так же, как и расцепители автоматов. Реле косвенного действия обеспечивают отключение выключателей путем воздействия на входящие в состав их приводов электромагниты отключения. Таким образом, расцепитель является встроенным первичным реле прямого действия. Вторичными встроенными реле прямого действия являются распространенные реле РТВ и РТМ, встраиваемые в приводы выключателей напряжением 6 – 10 кВ. Реле защиты, например, РТ-40, РН-50, серий РВ, РП являются выносными вторичными реле косвенного действия.

К релейной защите предъявляют следующие требования:

  1. Чувствительность, т.е способность реагировать на повреждения в минимальных режимах при наибольших сопротивления до места повреждения. Часто чувствительность характеризуют коэффициентом чувствительности
    Kч = I к min / Iср,
    где Ik min – ток короткого замыкания в минимальном режиме (в наиболее удаленной точке, при учете сопротивления электрической дуги и др.), Iср – ток срабатывания защиты, т.е. ток, при котором измерительные реле производят переключение своих контактов ( срабатывают).
  2. Быстродействие, т.е. максимально быстрое отключение поврежденной электрической цепи с целью обеспечения термической стойкости токоведущих частей и электрических аппаратов. Это необходимо для предотвращения возникновения пожаров в электроустановках.
  3. Селективность, или избирательность, т.е. способность реагировать на повреждения на защищаемом участке (в зоне действия защиты) и, соответственно, не действовать при повреждениях вне зоны действия. Требование селективности объясняется стремлением свести к минимуму число отключенных потребителей и источников питания при КЗ.
  4. Надежность, под которой понимают отсутствие неисправностей релейной аппаратуры, приводящих к отказам в действии (срабатывании) и неправильной работе устройств релейной защиты.

Релейная защита обычно функционирует совместно с электроавтоматикой, включающей в себя:

  • автоматический ввод резервного питания (АВР);
  • автоматическое повторное включение (АПВ) поврежденного элемента, например, воздушной линии;
  • автоматическая частотная разгрузка (АЧР), т.е. автоматическое отключение потребителей при опасном снижении частоты питающего напряжения энергосистемы.

На рис. 9.1 в качестве примера приведена однолинейная схема ТП с выключателем Q1 на стороне высшего напряжения.

На стороне низшего напряжения трансформатора Т1 подключены две радиальные линии W2 и W3. Защита от перенапряжений обеспечивается разрядником F1, ограничивающим перенапряжения, приходящие по линии W1. Ограничение производится до уровня, который выдерживает оборудование ТП. Релейная защита выполнена с помощью реле, расцепителей автомата QА1 и предохранителей F2, F3. На стороне ВН трансформатора Т установлены защиты I>> и I>, действующие на отключение выключателя Q1. Реле этих защит включены во вторичную цепь трансформатора тока ТА1 и реагируют на превышение током некоторых значений.

Значение тока или другой величины, при которых происходит переключение контактов реле, называют параметром срабатывания (в обиходной речи часто используют термин «уставка»). При срабатывании реле подается питание на электромагнит отключения выключателя Q1 (на рисунке не показан) и выключатель отключается. В результате поврежденный элемент (трансформатор) отключается от питающей сети. На стороне НН трансформатора основным аппаратом релейной защиты является предохранитель F2. Он отключает поврежденный участок за счет перегорания плавкой вставки. Отходящая линия W2 защищена с помощью расцепителей I>> и I> и автомата QА1. Указанные расцепители действуют на отключение QА1. Линия W3 защищена предохранителем F3. Рассмотренный пример является условным, так как обычно в ТП на стороне ВН выключатели не устанавливают. Этот пример служит лишь для облегчения понимания основных понятий релейной защиты.
Различают основные, резервные и дополнительные устройства релейной защиты. Основная защита предназначена для действия в пределах всего защищаемого элемента со временем, меньшим, чем у всех остальных защит. Резервная защита должна действовать вместо основной в случае ее отказа или вывода из работы. Резервная защита всегда имеет выдержку времени, т.е. срабатывает медленнее, чем основная защита. Дополнительная защита реагирует не на все повреждения или защищает только часть объекта (которую не может защитить основная защита). Дополнительная защита может не иметь выдержки времени. Различают защиты с абсолютной и относительной селективностью. У защит с абсолютной селективностью имеется четко выраженная зона действия, т.е. участок, на котором при повреждении защита срабатывает. Классическим примером защиты с абсолютной селективностью является продольная дифференциальная защита. На рис. 9.2 приведена в качестве примера упрощенная схема продольной дифференциальной защиты электродвигателя М.

Упрощение состоит в том, что показана цепь только одной фазы В защиты. Можно показать, что если точка КЗ находится между трансформаторами тока ТА1 и ТА2 (точка К2), то дифференциальное реле КА будет срабатывать. Участок цепи между ТА1 и ТА2, включающий в себя обмотку статора электродвигателя М, называется зоной действия защиты. Если же точка КЗ находится вне указанной зоны (точка К1), то защита не срабатывает. Термин «дифференциальная» означает реагирующую на разность чего-либо. В данном случае по реле защиты КА проходит разность токов в начале С2 и конце С5 фазы В обмотки статора М.
Защиты бывают индивидуальными и групповыми. Индивидуальная защита предназначена для действия при повреждении только на одном элементе сети. Групповая защита реагирует на повреждение нескольких элементов сети, например, всех отходящих от РУ линий. Примером групповой защиты является защита минимального напряжения секции или системы шин.

Рис. 9.2. Дифференциальная защита электродвигателя


Различают ближнее и дальнее резервирование. Если резервная релейная защита установлена в той же электроустановке, что и основная, и действует на отключение тех же коммутационных аппаратов, на которые действует основная защита, то ее называют защитой ближнего резервирования. Защита, действующая при повреждении данного элемента на отключение коммутационного аппарата смежного элемента, называется защитой дальнего резервирования.

В качестве примера на рис. 9.3 показана защита двух линий электропередачи W1 и W2 с односторонним питанием от системы С. В начале каждой линии установлены трансформаторы тока ТА1 и ТА2, к которым подключены основные защиты I >> (токовые отсечки ТО1 и ТО2) и резервные максимальные токовые защиты (МТЗ1 и МТЗ2) I > с выдержками времени ?t1 и ?t2. МТЗ2 является защитой ближнего резервирования для ТО2. МТЗ1 является защитой ближнего резервирования для ТО1 и дальнего резервирования для ТО2 и МТЗ2. С целью обеспечения дальнего резервирования МТЗ2 защита МТЗ1 должна срабатывать медленнее, чем МТЗ2, т.е. должно выполняться условие ?t1 > ?t2. Максимальные токовые защиты используют принцип относительной селективности, т.е. согласуются друг с другом по токам и времени срабатывания. Разность между выдержками времени ?t1 и ?t2 называют ступенью селективности. Указанную ступень стремятся сделать минимальной. В современных защитах не удается получить ступень селективности меньше чем 0,3–0,5 с, что объясняется погрешностями реле времени. Меньшая ступень относится к полупроводниковым, а большая – к электромеханическим реле времени.

Рис. 9.3. Принцип дальнего резервирования

Принципы действия релейной защиты

Основные принципы действия релейной защиты:

  • Максимальная токовая защита (МТЗ).
    Критерием срабатывания является достижение током определённого значения (уставки).
  • Направленная максимальная токовая защита.
    Работа направленной МТЗ предусматривает также и контроль направления мощности.
  • Газовая защита (ГЗ).
    Предназначена для отключения трансформаторов при возникновении внутренних неисправностей, которым сопутствует газовыделение.
  • Дифференциальная защита.
    Применяется в основном для защиты генераторов, трансформаторов и сборных шин, при этом производится сравнение токов на входе в защищаемый элемент и на его выходе, при отличии этих параметров на величину равную или большую уставки, происходит срабатывание защиты.
  • Дистанционная защита (ДЗ).
    Срабатывает при уменьшении сопротивления линии, что происходит при возникновении КЗ.
  • Дистанционная защита с ВЧ-блокировкой.
    Обычно дистанционная защита с ВЧ-блокировкой выполняется в комплексе с защитой от замыканий на землю. ВЧ-блокировка защит предназначена для ускорения отключения КЗ. Если на защищаемой ВЛ с двух сторон установлены ДЗ и ЗЗ, то КЗ на этой ВЛ обычно отключается 1-3 ступенями этих защит с выдержкой времени примерно от 0 до нескольких секунд. Использование ВЧ-блокировки ДЗ и ЗЗ обеспечивает двухстороннее отключение ВЛ без выдержки времени при любом виде КЗ в любой точке защищаемой ВЛ.
  • Дистанционная защита с блокировкой по оптическому каналу.
    Также в настоящее время получили широкое распространение защиты с блокировкой по оптическому кабелю. Они являются достойной альтернативой защитам с ВЧ- блокировкой, т.к. в случае их применения отпадает необходимость обслуживать оборудование ВЧ-присоединения, а также возрастает надёжность работы защит по причине более стабильной работы оптического канала, т.к. оптический канал менее подвержен воздействию электрических помех.
  • Логическая защита шин (ЛЗШ).
    Принцип действия логической защиты шин основан на сравнении поведения защит питающих элементов и отходящих фидеров: защита одного из отходящих фидеров запустилась – КЗ на отходящем фидере, не запустилась ни одна из защит отходящих фидеров – КЗ на шинах.
    При коротком замыкании на отходящем фидере пускаются зашиты (срабатывают токовые реле) на этом фидере и на питающих элементах секции (ввод трансформатора или секционный выключатель). При КЗ на отходящем фидере по факту пуска его защиты блокируется отключение питающих элементов без выдержки времени. При КЗ на шинах распредустройства защиты отходящих фидеров не пускаются, и при пуске защиты питающего элемента разрешается ее работа без выдержки времени на отключение.
  • Дуговая защита.
    Дуговая защита применяется в основном для защиты от возгорания КРУ и КТП 6,3 и 10,5. Она устанавливается в ячейках присоединений и реагирует на повышенную освещённость с помощью оптических датчиков или на избыточное давление с помощью датчиков давления (клапанов). Дополнительным входным параметром дуговой защиты является срабатывание токовой защиты (контроль по току), он применяется для исключения возможности ложных срабатываний.
  • Дифференциально-фазная (высокочастотная) защита (ДФЗ)
    Принцип работы основан на контроле фаз тока на обоих концах линии, в случае, когда фазы тока отличаются на величину равную или большую уставки, происходит срабатывание защиты.

Электроавтоматика

Если назначением релейной защиты является в первую очередь отключение оборудования, то в функции электроавтоматики входит его включение. В чистом виде к электроавтоматике относят автоматическое повторное включение (АПВ) и автоматическое включение резервного питания или механизма (сокращенно автоматический ввод резерва — АВР). Существуют также некоторые виды технологической электроавтоматики, обслуживающиеся персоналом служб РЗА. К ним относят:

  • автоматическое регулирование возбуждения генераторов и синхронных двигателей (АРВ);
  • автоматика управления выключателем (АУВ);
  • устройство резервирования отказов выключателя (УРОВ);
  • автоматическое регулирование положения переключателя РПН силового трансформатора (АРНТ);
  • автоматическую настройку дугогасящих катушек компенсации емкостного тока замыкания на землю в сети 6-35кВ (АРК);
  • автоматическую регулировку батареи статических конденсаторов;
  • автоматику охлаждения силовых трансформаторов;
  • автоматическую точную синхронизацию генераторов;
  • автоматическую самосинхронизацию генераторов;
  • автоматический частотный пуск гидрогенераторов (АЧП);
  • определение места повреждения линий электропередачи (ОМП).

Кроме этого существует противоаварийная режимная автоматика.
К ней относят:

  • автоматическую частотную разгрузку (АЧР);
  • автоматическое включение потребителей, отключенных действием АЧР, после восстановления частоты (ЧАПВ);
  • автоматическое регулирование частоты и активной мощности (АРЧМ);
  • дополнительная автоматическая разгрузка по напряжению (ДАРН);
  • дополнительная автоматическая разгрузка по току (ДАРТ);

Имеется также противоаварийная системная автоматика: разгрузка электростанций,
предотвращение и прекращение асинхронного режима, предотвращение
недопустимого повышения напряжения в узле, балансировочная автоматика. Такие
устройства размещаются на крупных электростанциях и подстанциях сверхвысокого
напряжения

Основные органы релейной защиты

Устройства релейной защиты состоят, как правило, из таких основных
частей:

  • пусковых органов;
  • измерительных органов;
  • логической части;
  • исполнительной части;
  • передающей части.

Пусковые органы непосредственно и непрерывно контролируют состояние и режим работы защищаемого оборудования и реагируют на возникновение КЗ и нарушения нормального режима работы. Пусковые органы выполняются с помощью реле тока, напряжения, мощности и др. На измерительные органы возлагается задача определения места и характера повреждения и принятие решения о необходимости действия защиты.
Измерительные органы также выполняются с помощью реле тока, напряжения, мощности и др. Функции пускового и измерительного органа могут быть объединены в одном органе. Логическая часть представляет собой схему, которая запускается пусковыми органами и, сопоставляя последовательность и продолжительность действия измерительных органов, производит отключение выключателей мгновенно или с выдержкой времени, запускает другие устройства, подает сигналы и производит прочие предусмотренные действия.
Логическая часть состоит в основном из элементов времени (таймеров), логических элементов, промежуточных и указательных реле. В аналоговых и микропроцессорных устройствах к ним добавляются дискретные входы и индикаторные светодиоды.
Исполнительная часть выполняет действие на отключение (включение) выключателей, или других внешних устройств.
Передающая часть используется в некоторых видах защит. Например, приемопередающая аппаратура ВЧ канала у дифференциально-фазных защит.

Согласно требованием ПТЭ, силовое оборудование электростанций, подстанций и электрических сетей должно быть защищено от коротких замыканий и нарушений нормальных режимов работы устройствами релейной защиты и электроавтоматики. Устройства РЗА должны быть постоянно включены, кроме устройств, которые должны выводиться из работы в соответствии с назначением и принципом действия, режимом работы энергосистемы и условиями селективности. Устройства аварийной и предупредительной сигнализации должны быть всегда готовы к действию. Свое название релейная защита получила от названия основного элемента схем защиты – реле.

Классификация реле

При рассмотрении данной темы нельзя не остановиться на видах релейной защиты. Классификация реле представлена следующим образом:

  • Способ подключения: первичные (включаются в цепь оборудования напрямую) и вторичные (подключение осуществляется через трансформаторы).
  • Вариант исполнения: электромеханические (система подвижных контактов расцепляет схему) и электронные (отключение происходит с помощью электроники).
  • Назначение: измерительные (осуществляют замер напряжения, силы тока, температуры и других параметров) и логические (передают команды другим устройствам, осуществляют выдержку времени и т.д.).
  • Способ воздействия: релейная защита прямого воздействия (связана механически с отключающим аппаратом) и косвенного воздействия (осуществляют управление цепью электромагнита, который отключает питание).

Что касается самих видов РЗА, их множество. Сразу же рассмотрим, какие бывают разновидности реле и для чего они используются.

  1. Максимальная токовая защита (МТЗ), срабатывает если ток достигает заданной производителем уставки.
  2. Направленная максимальная токовая защита, помимо уставки осуществляется контроль направления мощности.
  3. Газовая защита (ГЗ), используется для того, чтобы отключать питание трансформатора в результате выделения газа.
  4. Дифференциальная, область применения – защита сборных шин, трансформаторов, а также генераторов за счет сравнения значений токов на входе и выходе. Если разница больше заданной уставки, релейная защита срабатывает.
  5. Дистанционная (ДЗ), отключает питание, если обнаружит уменьшение сопротивления в цепи, что происходит в том случае, если возникает ток КЗ.
  6. Дистанционная защита с высокочастотной блокировкой, используется для отключения ВЛ при обнаружении короткого замыкания.
  7. Дистанционная с блокировкой по оптическому каналу, более надежный вариант исполнения предыдущего вида защиты, т.к. влияние электрических помех на оптический канал не такое значительное .
  8. Логическая защита шин (ЛЗШ), также используется для выявления КЗ, только в этом случае на шинах и фидерах (питающих линиях, отходящих от шин подстанции).
  9. Дуговая. Назначение – защита комплектных распределительных устройств (КРУ) и комплектных трансформаторных подстанций (КТП) от возгорания. Принцип работы основан на срабатывании оптических датчиков в результате повышения освещенности, а также датчиков давления при повышении давления.
  10. Дифференциально-фазная (ДФЗ). Применяются для контроля фаз на двух концах питающей линии. Если ток превышает уставку, реле срабатывает.

Отдельно хотелось бы также рассмотреть виды электроавтоматики, назначение которой в отличие от релейной защиты наоборот включать питание обратно. Итак, в современных РЗА используют автоматику следующего вида:

  1. Автоматический ввод резерва (АВР). Такую автоматику часто используют при подключении генератора к сети, как резервного источника электроснабжения.
  2. Автоматическое повторное включение (АПВ). Область применения – ЛЭП напряжением 1 кВ и выше, а также сборные шины подстанций, электродвигатели и трансформаторы.
  3. Автоматическая частотная разгрузка, которая отключает сторонние приборы при понижении частоты в сети.

Помимо этого существуют следующие виды автоматики:

Вот мы и рассмотрели назначение и области применения релейной защиты. Последнее, о чем хотелось бы рассказать – из чего состоит РЗА.

Конструкция РЗА

Устройство релейной защиты представляет собой схему из следующих частей:

  1. Пусковые органы – реле напряжения, тока, мощности. Предназначены для контроля режима работы электрооборудования, а также обнаружения нарушений в цепи.
  2. Измерительные органы – могут также находиться в пусковых органах (реле тока, напряжения). Основное назначение – запуск других устройств, подача сигнала в результате обнаружения ненормального режима работы, а также мгновенное отключение приборов или с задержкой по времени.
  3. Логическая часть. Представлена таймерами, а также промежуточными и указательными реле.
  4. Исполнительная часть. Отвечает непосредственно за отключение или же включение коммутационных аппаратов.
  5. Передающая часть. Может быть использована в дифференциально-фазной защите.

Напоследок рекомендуем вам просмотреть полезное видео по теме:

РЗА в энергетике для новичков

Это и все, что мы хотели рассказать вам о назначении релейной защиты и требованиях, предъявляемых к ней. Надеемся, теперь вы знаете, что такое РЗА, какая у нее область применения и из чего она состоит.

Будет полезно прочитать:

  • Какие бывают реле времени?
  • Причины срабатывания автоматического выключателя
  • Как определить короткое замыкание в сети

Релейная защита. Виды и устройство. Работа и особенности

Согласно правилам эксплуатации электроустановок силовые устройства электрических сетей и электростанций должны быть обеспечены защитой от сбоев в эксплуатации и токов короткого замыкания. Средствами защиты являются специальные устройства, выполненные на основе реле, что оправдывает их название релейная защита и автоматика (РЗА). В настоящее время существует много различных устройств, способных в короткие сроки блокировать возникшую аварию в электрической сети, либо подать предупредительный сигнал о возникновении аварийного режима.

Релейная защита работает чаще всего совместно с автоматикой, и их устройство взаимосвязано со специфическими видами аварийных режимов сети:

  • Уменьшение частоты тока, возникающей при внезапной перегрузке генераторов вследствие короткого замыкания, либо отключения части других источников из сети.
  • Повышенное напряжение. Увеличение этого параметра на 10% уменьшает срок службы ламп освещения в два раза. Такой режим возникает при внезапной разгрузке сети.
  • Токовая перегрузка способствует излишнему нагреванию изоляции проводников и кабелей, создает искрообразование в контактных соединениях.

Реле классифицируются по определенным признакам:

  • По методу подключения: первичные, которые подключаются непосредственно в цепь устройства, и вторичные, которые подключаются посредством трансформатора.
  • По типу исполнения: электромеханические, состоящие из подвижных контактов, отключающих цепь, и электронные, обесточивающие цепь с использованием полупроводниковых элементов.
  • По назначению: измерительные, которые выполняют измерение параметров, и логические, которые подают сигналы и команды другим устройствам, выполняют задержку по времени.
  • По методу работы: прямого действия, которые связаны с устройством отключения механическим путем, и косвенного действия, которые управляют электрической цепью электромагнита, обесточивающего сеть питания.

Релейная защита и автоматика бывают различных видов:

  • Максимальная токовая защита, включается при достижении определенной величины тока, заданной при настройке.
  • Направленная наибольшая токовая защита, кроме настройки тока учитывает направление мощности.
  • Дифференциальная, применяется для защиты сборки генераторов, трансформаторов, шин путем сравнения величин токов на выходе и входе. При разнице, превышающей заданное значение, срабатывает релейная защита.
  • Газовая и струйная, применяется для обесточивания трансформатора и других устройств, работающих в емкостях с маслом. При возникновении неисправностей образуется повышенная температура, и из масла выделяются газы, снижается диэлектрическое свойство масла и разлагается его химический состав. На такие аварийные режимы срабатывают механические реле, которые действуют с учетом возникновения газа в емкости, а также веществ, образующихся при разложении масла. При срабатывании защиты подается команда на действие логической схемы.
  • Логическая, защищает шины, применяется для определения места короткого замыкания на питающих линиях, которые отходят от шин электростанции, и на шинах.
  • Дистанционная, имеющая блокировку по оптическому каналу, является более надежным способом защиты, в отличие от дистанционной защиты с ВЧ блокировкой, так как электрические помехи не оказывают большого влияния на оптический канал.
  • Дистанционная с ВЧ блокировкой, применяется для обесточивания воздушных линий при возникновении коротких замыканий.

  • Дистанционная защита используется в сложных схемах сетей, где из-за чувствительности и быстродействия не могут применяться простые виды защит. Дистанционная защита выявляет расстояние до места аварии или короткого замыкания, и в зависимости от расстояния срабатывает с большей или меньшей задержкой по времени. Современные новые системы защит обладают ступенчатыми свойствами времени. Они каждый раз не измеряют величину сопротивления для определения расстояния до аварийного участка, а только осуществляют контроль участка, на котором выявлена неисправность.
  • Дифференциально-фазная, используется для контроля фаз по концам линии питания. При превышении настроенного значения тока, реле обесточивает линию.
  • Защита минимального напряжения. В аварийных режимах, особенно при коротком замыкании, возможна просадка напряжения. Для обеспечения отключения электрооборудования при снижении напряжения ниже критического значения предназначена защита минимального напряжения. Такая защита в свою очередь делится на групповую и индивидуальную. Групповая защита отключает группу потребителей с помощью реле минимального напряжения, которое работает совместно с промежуточным реле, отключающим своими силовыми контактами целую группу потребителей нагрузки. Такая релейная защита используется чаще всего на электростанциях для создания надежности функционирования наиболее ответственного оборудования при кратковременном резком снижении напряжения. Она отключает на время падения напряжения менее ответственное оборудование, для создания более благоприятных условий ответственных электрических устройств. Индивидуальная защита работает аналогичным образом, но отключает только один потребитель.
  • Защита максимального напряжения. Имеется два вида реле, защищающих потребители от повышенного напряжения. Первый вид – это защита, действующая по принципу отвода удара молнии по молниеотводу на контур заземления. Второй вид – это устройства, компенсирующие энергию рассеянным теплом во внешнюю среду. Они не применяют релейную основу, а действуют сразу в силовой схеме. Защита максимального напряжения проектируется по принципу минимальных, с такими же измерительными элементами, но реле настраивается на срабатывание по уставке повышения напряжения, превосходящей некоторый допустимый предел напряжения эксплуатации цепи.

Некоторые виды автоматики предназначены для подачи электроэнергии, в отличие от релейной защиты:

  • Автоматическая частотная разгрузка, выключает электрические устройства при снижении частоты тока в сети.
  • Автоматическое повторное включение, используется на линиях электропередач выше 1000 вольт, а также в сборках трансформаторов, электродвигателей и шин подстанций.
  • Автоматический ввод резерва, применяется при коммутации генератора в сеть в качестве резервного источника питания электроэнергией.

Релейная защита. Устройство

Электромеханические конструкции релейной защиты постоянно модернизируются и совершенствуются. Внедряются инновационные технологические разработки и проекты. В новейших энергетических системах объединены статические, индукционные, электромагнитные устройства с микропроцессорными и полупроводниковыми элементами.

Однако основной смысл и порядок работы релейной защиты для всех новых устройств остается неизменным. Схема структуры релейной защиты показана на рисунке.

1 — Электрический сигнал
2 — Блок наблюдения электрических процессов
3 — Блок логики и анализа
4 — Исполнительный блок
5 — Сигнальный блок

Блок наблюдения

Главной функцией этого блока является мониторинг электрических процессов, происходящих в электрической системе, путем измерений такими устройствами, как трансформаторы напряжения и тока.

Сигналы выхода на блоке могут передаваться непосредственно логическому блоку для сравнения параметров с настроенными пользователем значениями отклонений от нормальных значений, которые называются уставками. Также сигналы блока наблюдения могут сначала преобразовываться в цифровой вид, а затем передаваться дальше.

Блок логики

В этом блоке выполняется сравнение поступивших сигналов с предельными значениями уставок. Даже незначительное совпадение этих параметров между собой приводит к возникновению команды на срабатывание защиты.

Исполнительный блок

Этот блок все время находится в состоянии, готовом к срабатыванию, при поступлении команды от блока логики. При срабатывании осуществляются переключения цепи электроустановки по запланированному алгоритму, который составлен по принципу недопущения неисправностей электрооборудования и удара электрическим током работников.

Сигнальный блок

В электрической системе все процессы происходят очень быстро, поэтому человек не в состоянии воспринимать их. Чтобы сохранить происходящие в системе события, применяют специальные сигнальные устройства, которые работают путем звукового и визуального оповещения, а также сохраняют все происходящие события в памяти устройства.

Все виды устройств после их срабатывания переводятся в исходное состояние оператором вручную. Это позволяет гарантированно сохранить информацию о действии автоматики и релейной защиты.

Принципы работы

Релейная защита может иметь нарушения в своей работоспособности, которые выражаются следующими факторами:

  • Ложные срабатывания при исправной электрической системе и отсутствии каких-либо повреждений.
  • Излишние сработки, когда не требуется работа исполнительного блока.
  • Повреждения внутри устройства защит.

Чтобы исключить отказы при функционировании релейной защиты, вырабатываются специальные требования к ней при проектировании, установке, настройки с запуском в работу, и техническом обслуживании:

  • Надежность функционирования.
  • Чувствительность к моменту запуска оборудования.
  • Быстродействие (время сработки).
  • Селективность.

Принцип надежности

Этот принцип определяется:

  • Безотказностью в эксплуатации.
  • Пригодностью к ремонту.
  • Долгим сроком службы.
  • Сохраняемостью.

Обслуживание и эксплуатация релейной защиты имеет три варианта надежности по срабатыванию:

  1. При внутренних КЗ в рабочей зоне.
  2. При возникновении внешних КЗ за границей рабочей зоны.
  3. При работе без неисправностей.

Надежность устройств защиты бывает:

  • Эксплуатационная.
  • Аппаратная.

Принцип чувствительности

Этот принцип дает возможность определить виды предполагаемых расчетных повреждений и ненормальных режимов энергетической системы в рабочей зоне защиты.

Кч = Iкз min/Iсз

Чтобы определить его числовое значение, используется коэффициент Кч, который рассчитывается отношением наименьшего тока короткого замыкания рабочей зоны к величине тока срабатывания. Релейная защита работает в нормальном режиме при:

Iсз < Iкз min

Наиболее приемлемая величина коэффициента чувствительности находится в диапазоне 1,5-2.

Принцип быстродействия

Время обесточивания поврежденного участка состоит из двух составляющих:

  1. Время сработки защиты.
  2. Время действия привода выключателя.

Первую составляющую можно отрегулировать, начиная от наименьшего значения, которое зависит от устройства защиты и числа применяемых элементов. Задержка по времени на сработку формируется, путем внедрения в схему специальных реле, имеющих возможность регулировки. Она применяется для наиболее удаленных защит.

Устройства, находящиеся рядом с местом неисправности, должны настраиваться на действие с наименьшими возможными диапазонами времени на срабатывание.

Принцип селективности

Этот принцип по-другому называется избирательностью. С помощью нее можно найти и локализовать место возникшего повреждения в структуре сети любой сложности.

Например, генератор вырабатывает и подает электроэнергию различным потребителям, находящимся на участках 1, 2, 3, которые оснащены каждый своей защитой. При коротком замыкании внутри устройства потребителя на 3-м участке, ток будет протекать по всем устройствам защиты, начиная от источника питания.

Но в таком случае целесообразно будет отключить цепь участка, имеющего неисправность электродвигателя, при этом оставляя в работе остальные исправные потребители. Для этого существуют уставки релейной защиты, отдельно для каждой цепи, еще на стадии проектирования схемы защиты.

Устройства защиты 5, 3-го участка должны обнаружить ток неисправности раньше, и оперативнее сработать, отключив поврежденный участок от цепи генератора. Поэтому значения токовых и временных уставок на каждом участке снижаются от генератора к потребителю, по принципу: чем дальше от неисправного места, тем ниже чувствительность.

В результате исполняется принцип резервирования, который учитывает возможность поломки любых устройств, включая системы защиты более низкого уровня. Это означает, что при повреждении защиты 5 участка №3, при возникновении аварии должны сработать устройства защиты 3 или 4 участка 2. А эти участки в свою очередь подстрахованы устройствами защиты участка 1.

Особенности управления релейной защитой

Релейная защита как отдельный блок является самостоятельной схемой, однако он входит в общие комплексы, которые составляют систему противоаварийного управления энергетической системы. В такой системе все элементы взаимосвязаны между собой и выполняют поставленные задачи в комплексе.

Коротко перечень защитных функций и работа автоматики изображены на схеме.

Изучив особенности эксплуатации автоматики и релейной защиты, можно сказать, что необходимо постоянно совершенствовать знания и практические навыки, которые требуются при поступлении в работу нового оборудования для защиты.

This entry was posted in Ремонт. Bookmark the <a href="https://kabel-house.ru/remont/relejnaya-zashhita-i-avtomatika/" title="Permalink to Релейная защита и автоматика" rel="bookmark">permalink</a>.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *