Принцип работы термоэлектрического холодильника

ТЕРМОЭДС

ТЕРМОЭДС

— электродвижущая сила U, возникающая в электрич. цепи, состоящей из неск. разнородных проводников, контакты между к-рыми имеют разл. темп-ры ( Зе-ебека эффект). Если электрич. цепь состоит из двух разл. проводников, она наз. термоэлементом или термопарой. Величина T. зависит только от темп-р горячего T1. и холодного T2 контактов и от материалов проводников. В небольшом интервале темп-р (0-100 oC) U=a(T1-T2). Коэф. а, называемый коэф. Зеебека или термоэлектрич. способностью пары, термосилой, коэф. Т., удельной Т., зависит от материала проводников и интервала темп-р (табл.).

Цифры, приведённые в табл., условны, т. к. T. чувствительна к микроскопия. кол-вам примесей, к ориентации кристаллич. зёрен. T. может возникнуть в цепи, состоящей и из одного материала, если его разные участки подвергались разл. технол. операциям. Она не меняется при последоват. включении в цепь любого кол-ва др. материалов, если появляющиеся при этом дополнит. места контактов поддерживают при одной и той же темп-ре.

Значения a для некоторых металлов и сплавов по отношению к Pb

П р и м е ч а н и е. Знак «+» указывает, что ток течёт от Pb к данному металлу через более нагре тый спай, а знак » -«-через холодный спай.

Если вдоль проводника существует градиент темп-ры, то электроны на горячем конце приобретают более высокие энергии и скорости. В полупроводниках, кроме того, концентрация электронов растёт с темп-рой. В результате возникает поток электронов от горячего конца к холодному, на холодном конце накапливается отрицат. заряд, а на горячем остаётся нескомпенсир. положит. заряд. Накопление заряда продолжается до тех пор, пока возникшая разность потенциалов не вызовет равный обратный поток электронов. Алгебраич. сумма таких разностей потенциалов в цепи создаёт одну из составляющих Т., к-рую наз. объёмной. Другие составляющие T. связаны с температурной зависимостью контактной разности потенциалов и с эффектом увлечения электронов фононами.T. к. число фононов, движущихся от горячего конца к холодному, больше, чем число электронов, движущихся навстречу, то в результате увлечения ими электронов на холодном конце накапливается отрицат. заряд. Эта составляющая Т., называемая T. у в л е ч е н и я, при низких темп-pax может быть в десятки и сотни раз больше других. В магнетиках играет роль также увлечение электронов магнонами.

T. металлов очень мала, сравнительно больше T. в полуметаллах и их сплавах, а также в нек-рых переходных металлах и их сплавах (напр., в сплавах Pd-Ag T. достигает 86 мкВ/К). T. в этих случаях велика из-за того, что ср. энергия электронов в потоке сильно отличается от энергии Ферми. Иногда быстрые электроны обладают меньшим коэф. диффузии, чем медленные, и T. меняет знак. Величина и знак T. зависят также от формы ферми-поверх-ности, разл. участки к-рой могут давать в T. вклады противоположного знака. Знак T. металлов иногда меняется на противоположный при низких темп-pax. В полупроводниках n -типа на холодном контакте скапливаются дырки, а на горячем остаётся нескомпенсир. отрицат. заряд (если аномальный механизм рассеяния носителей заряда или эффект увлечения не приводит к перемене знака Т.). В термоэлементе, состоящем из полупроводников р- и п- типов, T. складываются. В полупроводнике со смешанной проводимостью к холодному контакту диффундируют и электроны и дырки и их заряды взаимно компенсируются. Если концентрации и подвижности электронов и дырок равны, то T. равна нулю.

Лит. см. при ст. Зеебека эффект. Л. С. Стильбанс.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.

Термоэлектрический эффект и охлаждение, эффект Пельтье

Экономическая эффективность применения термоэлектрических холодильников по сравнению с другими типами холодильных машин возрастает тем больше, чем меньше величина охлаждаемого объема. Поэтому наиболее рационально в настоящее время использование термоэлектрического охлаждения для холодильников бытового назначения, в охладителях пищевых жидкостей, кондиционерах воздуха, кроме того, термоэлектрическое охлаждение успешно используется в химии, биологии и медицине, метрологии, а также в торговом холоде (поддержание температуры в холодильных камерах), холодильном транспорте (рефрижераторы), и др. областях

Термоэлектрический эффект

В технике широко известен эффект возникновения термоЭДС в спаянных проводниках, контакты (места спаев) между которыми поддерживаются при различных температурах (эффект Зеебека). В том случае, когда через цепь двух разнородных материалов пропускается постоянный ток, один из спаев начинает нагреваться, а другой — охлаждаться. Это явление носит название термоэлектрического эффекта или эффекта Пельтье.

Рис. 1. Схема термоэлемента

На рис. 1 показана схема термоэлемента. Два полупроводника n и m составляют контур, по которому проходит постоянный ток от источника питания С, при этом температура холодных спаев X становится ниже, а температура горячих спаев Г становится выше температуры окружающей среды, т. е. термоэлемент начинает выполнять функции холодильной машины.

Температура спая снижается вследствие того, что под воздействием электрического поля электроны, двигаясь из одной ветви термоэлемента (m) в другую (n), переходят в новое состояние с более высокой энергией. Энергия электронов повышается за счет кинетической энергии, отбираемой от атомов ветвей термоэлемента в местах их сопряжений, в результате чего этот спай (X) охлаждается.

При переходе с более высокого энергетического уровня (ветвь п) на низкий энергетический уровень (ветвь т) электроны отдают часть своей энергии атомам спая Г термоэлемента, который начинает нагреваться.

В нашей стране в конце 1940-х и начале 1950-х годов академиком А. Ф. Иоффе и его учениками были проведены очень важные исследования, связанные с разработкой теории термоэлектрического охлаждения. На базе этих исследований была впервые сконструирована и испытана серия охлаждающих устройств.

Энергетическая эффективность термоэлектрических холодильных машин значительно ниже эффективности других типов холодильных машин, однако простота, надежность и отсутствие шума делают использование термоэлектрического охлаждения весьма перспективным.

Эффективность применения термоэлектрического охлаждения

Выбор материала для элементов

Экономичность термоэлемента, а также максимальное снижение температуры на спаях зависят от эффективности (добротности) полупроводникового вещества z, в которую входят удельная электропроводность σ, коэффициент термоЭДС α и удельная теплопроводность κ. Эти величины взаимосвязаны, так как зависят от концентрации свободных электронов или дырок. Такая зависимость представлена на рис. 2.

Из рисунка видно, что электропроводность σ пропорциональна числу носителей n, термоЭДС стремится к нулю с увеличением n и возрастает при уменьшении n. Теплопроводность к состоит из двух частей: теплопроводности кристаллической решетки κp, которая практически не зависит от n, и электронной теплопроводности κэ, пропорциональной n.

Эффективность металлов и металлических сплавов мала из-за низкого коэффициента термоЭДС, а в диэлектриках — из-за очень малой электропроводимости. По сравнению с металлами и диэлектриками эффективность полупроводников значительно выше, чем и объясняется их широкое применение в настоящее время в термоэлементах. Эффективность материалов также зависит от температуры.

Термоэлемент состоит из двух ветвей: отрицательной (n-тип) и положительной (р-тип). Так как материал с электронной проницаемостью имеет термоЭДС с отрицательным знаком, а материал с дырочной проводимостью — с положительным, то можно получить большее значение термоЭДС.

Рис. 2. Качественные зависимости термоЭДС, электропроводности и теплопроводности от концентрации носителей

При увеличении термоЭДС растет z.

Для термоэлементов в настоящее время применяют низкотемпературные термоэлектрические материалы, исходными веществами которых являются висмут, сурьма, селен и теллур. Максимальная эффективность z для этих материалов при комнатных температурах составляет: 2,6·10-3 °С-1 для n-типа, 2,6·10-1 °С-1 — для р-типа.

В настоящее время Bi2Te3 применяют редко, поскольку созданные на его основе твердые растворы Bi2Te3-Be2Se3 и Bi2Te3-Sb2Te3 имеют более высокие значения z. Эти материалы впервые были получены и исследованы в нашей стране, и на их основе освоен выпуск сплавов ТВЭХ-1 и ТВЭХ-2 для ветвей с электронной проводимостью и ТВДХ-1 и ТВДХ-2 — для ветвей с дырочной проводимостью .

Твердые растворы Bi-Se применяют в области температур ниже 250 К. Максимального значения z = 6·10-3 °С-1 достигает при Т≈80÷90 К. Интересно отметить, что эффективность этого сплава значительно повышается в магнитном поле.

Полупроводниковые ветви в настоящее время изготавливают тремя методами: методом порошковой металлургии, литьем с направленной кристаллизацией и вытягиванием из расплава. Метод порошковой металлургии с холодным или горячим прессованием образцов наиболее распространен.

В термоэлектрических охлаждающих устройствах применяют, как правило, термоэлементы, у которых отрицательная ветвь изготовлена методом горячего прессования, а положительная — методом холодного прессования.

Рис. 3. Схема термоэлемента

Механическая прочность термоэлементов незначительна. Так, у образцов сплава Bi2Te3-Sb2Te3, изготовленных методом горячего или холодного прессования, предел прочности при сжатии составляет 44,6–49,8 МПа.

Для повышения прочности термоэлемента между коммутационной пластиной 1 (рис. 3) и полупроводниковой ветвью 6 ставится демпфирующая свинцовая пластина 3; кроме того, применяют легкоплавкие припои 2, 4 и припой SiSb 5. Испытания показывают, что термоэлектрические устройства имеют виброударную стойкость до 20g, термоэлектрические охладители малой холодопроизводительности — до 250g.

Сравнение термоэлектрических охлаждающих устройств с другими способами охлаждения

Термоэлектрические охлаждающие устройства имеют ряд преимуществ по сравнению с другими типами холодильных машин. В настоящее время в системах кондиционирования воздуха на судах применяют теплоиспользующие или паровые холодильные машины. В холодное время года судовые помещения обогревают электро-, паро- или водонагревателями, т. е. применяют раздельные источники теплоты и холода.

При помощи термоэлектрических устройств в теплое время года можно охлаждать помещения, а в холодное — обогревать. Режим обогрева изменяют на режим охлаждения путем реверса электрического тока.

Кроме того, к преимуществам термоэлектрических устройств следует отнести: полное отсутствие шума при работе, надежность, отсутствие рабочего вещества и масла, меньшие массу и габаритные размеры при той же холодопроизводительности.

Сравнительные данные по хладоновым машинам для провизионных камер на судах показывают, что при одинаковой холодопроизводительности масса термоэлектрической холодильной машины в 1,7–1,8 раза меньше.

Термоэлектрические холодильные машины для систем кондиционирования воздуха имеют объем приблизительно в четыре, а массу в три раза меньше, чем хладоновые холодильные машины.

Рис. 4. Цикл Лоренца

К недостаткам термоохлаждающих устройств следует отнести их низкую экономичность и повышенную стоимость.

Экономичность термоэлектрических холодильных машин по сравнению с паровыми приблизительно на 20-50% ниже . Высокая стоимость термоохлаждающих устройств связана с высокими ценами на полупроводниковые материалы.

Однако существуют области, где уже теперь они способны конкурировать с другими типами холодильных машин. Например, начали применять термоэлектрические устройства для охлаждения газов и жидкостей. Примерами устройств этого класса могут служить охладители питьевой воды, воздушные кондиционеры, охладители реактивов в химическом производстве и др.

Для таких холодильных машин образцовым циклом будет треугольный цикл Лоренца (см. рис. 4). Приближение к образцовому циклу достигается простым путем, так как для этого требуется только видоизменить электрическую схему коммутации, что не вызывает конструктивных трудностей. Это позволяет существенно, в некоторых случаях более чем вдвое, повысить эффективность термоэлектрических холодильных машин. Для реализации этого принципа в паровой холодильной машине пришлось бы применять сложную схему многоступенчатого сжатия.

Весьма перспективным может быть использование термоэлектрических устройств в качестве «интенсификатора теплопередачи». В тех случаях, когда из какого-либо небольшого пространства необходимо отвести теплоту в окружающую среду, а поверхность теплового контакта ограничена, располагаемые на поверхности термоэлектрические батареи могут значительно интенсифицировать процесс теплопередачи.

Как показывают исследования , сравнительно небольшой расход электроэнергии способен существенно увеличить удельный тепловой поток. Можно интенсифицировать теплопередачу и без затраты электроэнергии. В этом случае необходимо замкнуть термобатарею.

Наличие разности температур приведет к появлению термоЭДС Зеебека, которая и обеспечит питание термоэлектрической батареи. С помощью термоэлектрических устройств можно изолировать одну из теплообменивающихся сред, т. е. использовать ее в качестве совершенной тепловой изоляции.

Важное обстоятельство, также определяющее область, в которой термоэлектрические холодильные машины способны конкурировать с другими типами холодильных машин даже по энергетической эффективности, состоит в том, что уменьшение холодопроизводительности, например, паровых холодильных машин ведет к снижению их холодильного коэффициента.

Для термоэлектрической холодильной машины это правило не соблюдается, и ее эффективность практически не зависит от холодопроизводительности. Уже в настоящее время для температур Тх = 0°С и Тк = 26°С и производительности несколько десятков ватт энергетическая эффективность термоэлектрической машины близка к эффективности паровой холодильной машины.

Широкое внедрение термоэлектрического охлаждения будет зависеть от прогресса в создании совершенных полупроводниковых материалов, а также от серийного производства эффективных в экономическом отношении термобатарей.

Список литературы.

1. Цветков Ю. Н., Аксенов С. С., Шульман В. М. Судовые термоэлектрические охлаждающие устройства.— Л.: Судостроение, 1972.— 191 с.

2. Мартыновский В. С. Циклы, схемы и характеристики термотрансформаторов.— М.: Энергия, 1979.— 285 с.

Читайте также по этой теме: Эффект Пельтье: магическое действие электрического тока

Термоэлектрическое охлаждение

Одним из перспективных способов получения искусственного холода является термоэлектрическое охлаждение. Термоэлектрические охлаждающие батареи обладают рядом достоинств: простотой устройства, отсутствием рабочего вещества, бесшумностью работы, компактностью.
Термоэлектрическое охлаждение основано на использовании эффекта Пельтье, заключающегося в том, что при прохождении постоянного тока по замкнутой цепи из разных проводников на спаях возникает разность температур.
При термоэлектрическом охлаждении наибольший эффект достигается при использовании полупроводниковых элементов.
Он состоит из полупроводникового термо­элемента и батареи элементов. Каждый термоэлемент состоит из двух последовательно соединенных полупроводников прямоугольной или круглой формы. Полупроводники с помощью медных пластин образуют спаи.
Отдельные термоэлементы соединяются последовательно в батареи. При прохождении через батарею электрического тока, спаи на одной из ее сторон нагреваются, а на другой — охлаждаются. В бытовом холодильнике холодные спаи термобатареи устанавливают в задней внутренней стенке холодильной камеры. Перепад температур между горячими и холодными спаями составляет до 45—50°C.
В качестве полупроводниковых термоэлементов применяют сплавы свинца и теллура, теллура и сурьмы, окислы металлов и чистые химические элементы: германий, кремний, селен и их соединения. В настоящее время термоэлектрическое охлаждение применяется в бытовых холодильниках и автономных кондиционерах.
Недостатками термоэлектрического охлаждения являются в основном большой расход электроэнергии и высокая стоимость термоэлектрических охлаждающих батарей.

Холодильники термоэлектрического типа

Термоэлектрические холодильники

Общие сведения.

Эффект термоэлектрического охлаждения, открытый французским физиком Ж. Пельтье в 1834г., заключается в том, что при пропускании постоянного тока через термоэлемент, состоящий из двух проводников или полупроводников, в месте их соединения выделяется или поглощается некоторое количество теплоты, которое пропорционально силе тока.

Тепловой поток, называемый теплотой Пельтье, определяется по уравнению

Qп = p I, где

p — коэффициент Пельтье;

I — сила тока.

Выделение или поглощение теплоты Пельтье зависит от направления тока и термотока, который возник бы при нагревании места соединения проводников. При совпадении направления тока в проводниках теплота Пельтье поглощается, а в противном случае выделяется. Если спаев несколько, выделение теплоты на одном спае всегда сопровождается поглощением ее на другом, и наоборот.

Причина возникновения эффекта Пельтье состоит в том, что средняя энергия, электронов, участвующих в переносе тока из одного проводника в другой, различна. Это наглядно подтверждается на примере контакта электронного полупроводника и металла.

Предположим, что направление тока соответствует направлению перехода электронов из полупроводника в металл. Так как энергетический уровень свободных электронов полупроводника значительно выше уровня свободных электронов металла, при переходе из полупроводника в металл электроны, сталкиваясь с атомами металла, отдают им свою избыточную энергию.

Это приводит к выделению теплоты Пельтье и повышению температуры спая. При противоположном направлении тока весь процесс идет в обратном направлении и теплота Пельтье поглощается.

Долгое время эффект термоэлектрического охлаждения не находил практического применения из-за отсутствия достаточно эффективных материалов термоэлементов, и только после ряда открытий в области полупроводниковой техники появилась возможность эффективно использовать это явление на практике.

Холодильники с термоэлектрическим охлаждением не имеют движущихся и трущихся частей, бесшумны в работе, позволяют точно регулировать температуру, надежны.

Термоэлектрические холодильники в основном применяются в автотранспорте. Их технические характеристики приведены в табл. 1.

Таблица 1. Техническая характеристика термоэлектрических холодильников
Параметр ХАТЭ-12 ХАТЭ-12М ХАТЭ-24 У4 «Холодок» ХТЭП-13,8ПР
Номинальное напряжение, В 12 12 24 12 12
Потребляемая мощность:
— в основном режиме
— во вспомогательном режиме
— в режиме нагрева
50

65
30
170

35
25
40
45
30
50
Разность температур окружающей среды и в холодильной камере, °С 18 19 28 26 26
Температура в камере в режиме нагрева, °С 60 60
Объем холодильной камеры, дм3 12 12 8 9,2 13,8
Габаритные размеры, мм 390х480х260 410х500х280 580х260х360 326х237х380 316х322х394
Масса, кг 6 7 15 6 6,8

Принципиальная схема бытового термоэлектрического холодильника показана на рис. 1а.

Рис. 1. Схема термоэлектрического холодильника (а) и схема работы термоэлемента (б)

Термобатарея, состоящая из двух различных полупроводниковых термоэлементов n и р, размещается в толщине одной из стенок холодильной камеры так, чтобы холодные спаи были обращены в холодильную камеру, а горячие — в более теплую окружающую среду. Спаи термоэлементов выполняются в виде коммутационных пластин, хорошо проводящих электрический ток. Эти пластины обычно соединяются с ребристыми радиаторами которые увеличивают поверхность и, следовательно, интенсивность передачи тепла холодным спаям из холодильной камеры и от горячих спаев в окружающую среду.

К конечным элементам термобатареи подключается источник постоянного тока. При этом в зависимости от назначения холодильника в качестве источника постоянного тока может служить электрический аккумулятор (батарея) или генератор постоянного тока. В стационарных условиях эксплуатации постоянный ток питания термобатареи получается обычно с использованием выпрямителя, подключаемого к сети переменного тока.

При направлении постоянного тока, указанном на рис.1.б стрелками, ток со стороны холодных спаев термобатареи оказывается направленным от термоэлемента n к термоэлементу р, а со стороны горячих спаев наоборот— от р к n. Разность направления движения зарядов постоянного тока через два термоэлемента из различных материалов и вызывает перепад температур на их концах.

Если направление постоянного тока изменить на противоположное, то в верхних спаях термобатареи ток будет идти от р к n и они будут уже нагреваться, а не охлаждаться, как ранее. Таким образом, изменяя направление питающего постоянного тока, можно легко изменить режим работы термобатареи с охлаждения на нагревание воздуха в среде ограниченного объема.

Аппарат термоэлектрического охлаждения представляет собой батарею (рис. 2, а) состоящую из отдельных последовательно спаянных между собой полупроводниковых термоэлементов. Термоэлемент (рис. 2, б) имеет два полупроводника в виде прямоугольных или цилиндрических брусков. Один из полупроводников сделан из сплава свинца и теллура другой — из сплава теллура и сурьмы. Применяются также сплавы висмута и селена.

Рис. 2. Аппарат термоэлектрического охлаждения:

а — термобатарея; б — термоэлемент

Полупроводники последовательно соединены спаянными с ними медными пластинками. При прохождении постоянного тока через спаи одни из них (верхние или нижние в зависимости от направления тока) будут поглощать, а другие выделять некоторое количество тепла. Таким образом, тепло переносится электрическим током, т.е. движущимися электронами.

Холодильник ХАТЭ-12М

Холодильник состоит из корпуса 1 (рис. 3, а), крышки 2 и соединительного шнура 10. Для подключения холодильника к источникам электроэнергии автомашин различных марок применяют переходное устройство, которое надевают на вилку соединительного шнура. В крышку вмонтированы вентилятор и термоохлаждающий агрегат 6, состоящий из радиатора 7 тепла и радиатора 9 холода. Вентилятор состоит из электродвигателя 5, на концах вала которого закреплены крыльчатки 3 и 8.

Рис. 3. Холодильник ХАТЭ-12М:

а — общий вид: 1 — корпус: 2 — крышка; 3, 8— крыльчатки; 4 — резистор; 5 — электродвигатель; 6 — термоохпаждающий агрегат; 7 — радиатор тепла; 9 — радиатор холода; 10 — соединительный шнур; 11 —переключатель

б — электрическая схема: М—электродвигатель: S —выключатель; R — резисторы; G — источник питания

С помощью переключателя 11, расположенного на крышке холодильника, меняют один режим на другой: в одном случае напряжение подается через резистор 4, а в другом — термоагрегат непосредственно присоединяется к источнику питания.

Термоэлектрическая батарея, включенная в электросеть постоянного тока напряжением 12 В, создает перепад температур между рабочими поверхностями. Крыльчатка 3 (при включенном электродвигателе) охлаждает радиатор тепла, а крыльчатка-8 перемешивает воздух в холодильной камере.

Электрическая схема холодильника показана на рис.3, б. В комплект поставки холодильника входят две загрузочные сетки, два ключа, переходное устройство.

Холодильник ХАТЭ-24 У4

Этот холодильник устанавливают в кабине грузовых автомобилей. Он предназначен для охлаждения и краткосрочного хранения пищевых продуктов и напитков.

Снаружи корпус холодильника выполнен из листовой стали и покрыт искусственной кожей черного цвета. Изнутри корпус сделан из пищевого алюминия. Теплоизоляция — формованный пенополистирол. Крышка холодильника может служить подлокотником.

Холодильники «Холодок» и ХТЭП-13,8ПР

Эти переносные холодильники предназначены для эксплуатации в автомобилях. Холодильник выполнен в виде ларя с ручкой для переноса. Холодильная камера металлическая оснащена ложементом, который предотвращает перемещение крупной тары (бутылок) в частично заполненном холодильнике. В основании холодильника имеется место для укладки соединительного шнура.

Холодильник имеет три режима работы: основной, вспомогательный и нагрева. При основном режиме работы разность температур окружающей среды и в холодильной камере 26°С, при температуре окружающей среды 32 °С.

Вспомогательный режим работы рекомендуется использовать с целью уменьшения потребляемой мощности, а также для эксплуатации холодильника при окружающей температуре воздуха 25°С и ниже во избежание замораживания продуктов. В режиме нагрева температура внутри камеры достигает 70°С.

В камере установлен датчик температуры. При достижении температуры 70°С холодильник отключается. Переход с основного режима охлаждения на вспомогательный осуществляют вручную переключателем режимов, а переход в режим нагрева — изменением полярности питающего напряжения. В случае выхода из строя электровентилятора холодильник автоматически отключается.

Термоэлектрические холодильники «Холодок» и ХТЭП-13.8ПР в отличие от термоэлектрического холодильника ХАТЭ-12М имеют температуру внутри холодильной камеры на 6°С ниже, а удельную потребляемую мощность (отношение потребляемой мощности к объему холодильной камеры и перепаду температур) — на 45% меньше. Кроме того, они работают в режиме нагрева.

В отличие от зарубежных термоэлектрических холодильников температура внутри холодильной камеры описываемых холодильников ниже в среднем на 5 °С, а средняя потребляемая мощность — на 10%.

Статья подготовлена по материалам книги издательства СОЛОН-Пресс Серии Ремонт №35 «Ремонт холодильников» Д. А. Лепаев, В. В. Коляда 2005

Холодильник «Чайка» ТЭХ-40
Тип холодильника Термоэлектрический Разность температур окружающей среды и в холодильной камере, С 20
Объем низкотемпературной камеры, дм3 40
Потребляемая мощность, Вт 79 Габаритные размеры, мм 586х476х460

Устройство холодильника.

Внешняя облицовка (корпус) холодильника вместимостью 40 дм3 выполнена из листовой стали толщиной 0,8 мм и оклеена синтетической пленкой, внутренняя обшивка — из листового алюминия толщиной 3 мм. Пространство между облицовками заполнено теплоизоляцией (пенополиуретаном). Обе облицовки соединены рамкой из ударопрочного полистирола. Внутри камеры холодильника установлены полочки. Уплотненная профильной резиной дверца с самозащелкивающимся замком открывается вниз и может служить столиком.

Рис. 1 Внешний вид и устройство холодильника «Чайка»

В задней стенке холодильника размешен блок питания, состоящий из двух термоэлектрических батарей. В каждой батарее последовательно соединено 60 термоэлементов. Рядом с термоэлектрическими батареями установлены алюминиевые блоки-теплопереходы, отдающие теплоту, отводимую батареями из шкафа через ребристые радиаторы наружному воздуху. Прилегающие к плоскости термоэлектрических батарей поверхности деталей покрыты анодной электроизоляционной пленкой и смазаны теплопроводной пастой.

На горячей стороне термоэлектрических батарей на ребристых радиаторах расположено по 18 алюминиевых пластин размером 140х180х2 мм. Шаг ребер 4 мм. От радиатора теплота отводится осевым вентилятором типа К-95 подачей 40 м3/ч.

Электродвигатель с вентилятором, воздуховоды, блок электропитания и терморегулятор размещены на задней стенке холодильника под съемной крышкой из полистирола.

Блок электропитания термоэлектрических батареи, работающий по схеме двухполупериодного выпрямителя, состоит из силового трансформатора, двух германиевых диодов Д1 и Д2 типа Д-305, дросселя Др, двух конденсаторов емкостью до 50 мкФ и двух реле МКУ-48С с кнопкой.

В камере термоэлектрического холодильника ТЭХ-40 поддерживается температура 2…5°С, регулируемая терморегулятором РТ (ТРХ-2А) по схеме изменения напряжения, подаваемого на термоэлектрические батареи ТБ. В такой схеме первичная обмотка силового трансформатора разделена на две секции.

Рис. 2 Электрическая схема холодильника «Чайка»

При включении холодильника кнопкой К срабатывает промежуточное реле 2Р. Контактом 2Р1 оно переключается на самопитание, а контактом 2Р2 включает двигатель вентилятора ДВ и подготавливает цепь 1Р для автоматической работы. При повышении температуры в шкафу tшк реле температуры РТ включает 1Р. Контакт 1Р1 разомкнется, а контакт 1Р2 замкнется, т. е. включатся обе секции трансформатора Тр. Термобатарея ТБ работает на полную мощность (73 Вт).

При достижении tшк = 2°СРТ отключает 1Р. При этом контакт 1Р2 отключает одну секцию трансформатора, а через контакт 1Р1 питается только одна секция. Холодопроизводительность батареи вдвое уменьшается, и температура в шкафу возрастает до 5°С.

От аварийного перегрева термоэлектрические батареи защищает биметаллический терморегулятор ТР, установленный на крайнем ребре радиатора. Реле температуры отключает холодильник при температуре радиатора 70°С. В камере достигается температура 5°С примерно через 3 ч после включения. В цепи питания холодильника от электросети установлен предохранитель, рассчитанный на силу тока 2 А.

Советы по использованию

Коэффициент полезного действия подобного охлаждения – 16-17%, поэтому термоэлектрические холодильники не способны охлаждать помещенную в них продукцию в быстром режиме. Основная функция устройств такого типа – сохранять продукты холодными, а не способствовать их охлаждению. Если сравнивать их с изотермическими контейнерами, то время хранения продуктов в них не ограничено, поскольку прибор бесперебойно получает подпитку.

Прежде чем начать эксплуатировать термоэлектрический холодильник, нужно предварительно охладить все, что будет в нем храниться. Необходимо также дать охладиться пустой камере. В некоторых моделях автохолодильников предусмотрено два режима работы. Они могут подогревать и охлаждать продукты. За счет функции подогрева данный холодильник лидирует среди компрессорных и абсорбционных. Если хорошо знать устройство термоэлектрических холодильников, можно подобрать наиболее подходящую модель с набором определенных технических параметров.

При выборе автохолодильника необходимо определиться с местом его расположения в автомобиле и только после этого совершать покупку. Необходимо расположить устройство в машине таким образом, чтобы на него не попадали прямые солнечные лучи. Поскольку термоэлектрический холодильник медленно набирает температуру, его следует включить перед поездкой заранее. Можно пойти и другим путем – охладить камеру, используя аккумуляторы холода. С этой целью запрещено использовать лед, потому как талая вода станет причиной появления коррозии на металлических элементах автохолодильника.

Как выбирать

Как правило, термоэлектрические холодильники для дома и автомобиля не могут похвалиться большой вместительностью. Их объем составляет 0,5-50 л. Бюджетные модели способны функционировать в режиме охлаждения и исключительно от бортовой сети. В дорогостоящих устройствах предусмотрена функция разогрева и возможность подсоединения к бытовой сети.

Выбирая холодильник термоэлектрического типа, важно определиться с такими параметрами:

  • Объем. Автохолодильник вместительностью до 5 л идеален для автомобилистов, которые путешествуют самостоятельно. Такое устройство может вместить небольшое количество продукции и бутылок с напитками. Если предполагается поездка всей семьей или большой компанией, целесообразно предпочесть термоэлектрический холодильник, объем которого составит 30-40 л.
  • Длительность поездок. Если агрегат нужен для поездок загород или передвижений на минимальные расстояния, лучшим решением станет приобретение изотермической сумки или контейнера.
  • Температурный диапазон. Если холодильнику предстоит эксплуатироваться в жарких условиях, и разница в температурном режиме будет значительной, может понадобиться морозильная камера.

Отзывы

Если ссылаться на отзывы об термоэлектрических холодильниках, то владельцы таких устройств рекомендуют при выборе придерживаться следующих правил:

  1. Приобретать модель с защитным устройством, которое будет контролировать предельно допустимую разрядку аккумуляторной батареи автомобиля.
  2. Отдавать предпочтение холодильникам с достаточной длиной шнура (не менее 2 м).
  3. Выбирать устройство с надежно закрывающейся крышкой.

Модуль Пельтье можно использовать в 4 разных схемах: как нагревательный элемент (в инкубаторах…), как охлаждающий элемент (в холодильниках…), получать электричество (генератор…), а так же с помощью элемента Пельтье можно получать воду. Об этом и будет моя статья

Элемент Пельтье — это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье — возникновении разности температур при протекании электрического тока. В англоязычной литературе элементы Пельтье обозначаются TEC (от англ. Thermoelectric Cooler — термоэлектрический охладитель).

Эффект, обратный эффекту Пельтье, называется эффектом Зеебека.

Принцип действия

В основе работы элементов Пельтье лежит контакт двух токопроводящих материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов, электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному тепловому эффекту.

При контакте металлов эффект Пельтье настолько мал, что незаметен на фоне омического нагрева и явлений теплопроводности. Поэтому при практическом применении используется контакт двух полупроводников.

Элемент Пельтье состоит из одной или более пар небольших полупроводниковых параллелепипедов — одного n-типа и одного p-типа в паре (обычно теллурида висмута, Bi2Te3 и германида кремния), которые попарно соединены при помощи металлических перемычек. Металлические перемычки одновременно служат термическими контактами и изолированы непроводящей плёнкой или керамической пластинкой. Пары параллелепипедов соединяются таким образом, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни последовательности соединений (n->p), а снизу противоположные (p->n). Электрический ток протекает последовательно через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются — или наоборот. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.

Если охлаждать нагревающуюся сторону элемента Пельтье, например при помощи радиатора и вентилятора, то температура холодной стороны становится ещё ниже. В одноступенчатых элементах, в зависимости от типа элемента и величины тока, разность температур может достигать приблизительно 70 °C.

Достоинства и недостатки

Достоинством элемента Пельтье являются небольшие размеры, отсутствие каких-либо движущихся частей, а также газов и жидкостей. При обращении направления тока возможно как охлаждение, так и нагревание — это даёт возможность термостатирования при температуре окружающей среды как выше, так и ниже температуры термостатирования. Также достоинством являются отсутствие механических частей и отсутствие шума.

Недостатком элемента Пельтье является более низкий коэффициент полезного действия, чем у компрессорных холодильных установок на фреоне, что ведёт к большой потребляемой мощности для достижения заметной разности температур. Несмотря на это, ведутся разработки по повышению теплового КПД, а элементы Пельтье нашли широкое применение в технике, так как без каких-либо дополнительных устройств можно реализовать температуры ниже 0 °C.

Основной проблемой в построении элементов Пельтье с высоким КПД является то, что свободные электроны в веществе являются одновременно переносчиками и электрического тока, и тепла. Материал для элемента Пельтье же должен одновременно обладать двумя взаимоисключающими свойствами — хорошо проводить электрический ток, но плохо проводить тепло.

В батареях элементов Пельтье возможно достижение теоретически очень большой разницы температур, более 70 градусов по цельсию, в связи с этим лучше использовать импульсный метод регулирования температуры, благодаря которому можно снизить также потребление энергии. При этом желательно сглаживать пульсации тока для продления срока службы элемента Пельтье.

Применение термоэлектрического модуля: в куллерах для воды, системах охлаждения компьютеров или микросхем различных малогабаритных приборов,в электрических термогенераторах,охлаждение видеокарт, северных или южных мостов, автомобильные холодильники, охладители воздуха, Arduino, для охлаждение ПЗС матриц и инфрокрасных фотоприемников, в электрических термогенераторах, в термостатах, в научных лаболаторных приборов, термокалибраторов, термостабилизаторов. В общем там где требуется достижения перепадов температур более 60 градусов.

Размеры пластин Пельтье и характеристики потребления

Размеры пластин Пельтье и характеристики потребления (потребляемая мощность, напряжение, сила тока, максимальная разница температур). Маркировки этих термоэлектрических генераторов могут быть на разных сайтах разные, все зависит от производителя (например: TEG1-241-1.4-1.2; СР1.4-127-06L отечественные; TB-127-1.4-1.5 Frost-72; SP1848-27145; термогенератор Зеебека TEP1-142T300). Характеристики, в свою очередь будут не сильно отличаться, но некоторые показатели не значительно разнятся.

Qmax Umax Imax dTmax Размеры,(мм)
(Вт) (В) (A) (град) A B H
36,0 16,1 3,6 71 30,0 30,0 3,6
36,0 16,1 3,6 71 40,0 40,0 3,6
62,0 16,3 6,2 72 40,0 40,0 3,9
65,0 16,7 6,3 74 40,0 40,0 3,9
80,0 16,1 8,0 71 40,0 40,0 3,4
80,0 16,1 8,0 71 48,0 48,0 3,4
94,0 24,9 6,1 70 40,0 40,0 3,9
115,0 24,6 7,6 69 40,0 40,0 3,6
120,0 24,6 7,9 69 40,0 40,0 3,4
131,0 24,6 8,6 69 40,0 40,0 3,3
172,0 24,6 11,3 69 40,0 40,0 3,2
156,0 15,7 16,1 70 48,0 48,0 3,4
223,0 15,5 23,4 68 55,0 59,0 3,3
310,0 24,6 20,6 69 62,0 62,0 3,2

USB Холодильник своими руками (Модуль Пельтье)

Для постройки нашего мини-холодильника нам необходимо найти или купить элемент Пельтье (что это такое и как работает Вы сможете прочитать ниже) и два радиатора.


Вот этот самый элемент Пельтье, я выдрал его из сломанного компа, он там стоял между процессором и кулером. Счистил с него старую термопасту. В двух словах — этот элемент Пельтье при подаче на него постоянного тока начинает работать следующим образом: одна сторона у него начинает греться, а вторая — охлаждаться, если поменять полярность источника питания, то стороны элемента будут вести себя наоборот!

Далее я взял два массивных радиатора от ненужного усилка. Потом смазал элемент новой термопастой, которую купил в радио магазине, и зажал элемент Пельтье между радиаторов. Использование термопасты в данном случае обязательно!
Подключил провода к элементу от USB кабеля и воткнул в комп — одна радиатор начал греться, а второй — охлаждаться! Значит, всё пучком!

Далее я склеил вот такой интересный корпус.

Материал, из которого я склеил холодильник, похож на прессованный пенопласт или пористый пластик. В общем, материал может быть любым, его главное качество термоизоляция.
Стекло — органическое, выглядит довольно хрупко, но на самом деле материал прочный.
Клей — суперклей.

Потом для удобства сделал застёжку на магнитиках.
Получилось нормально — туда спокойно влезает бутылка минералки.

Генератор — получение электричества с помощью элемента Пельтье

Плюсы этого генератора:

— Топливо – всё что горит или греет.
— Выход USB 5 Вольт, 500mA.
— Не зависит от солнца, ветра и т.д.
— Простая и крепкая конструкция, которая может служить вечно.
— Можно готовить на нем еду, пока ваш телефон заряжается.
— Универсальность.
— Может собрать любой у себя дома за 1 вечер (даже работник АвтоВАЗа=)).
— Дешевизна конструкции.

Изобрел не я, есть коммерческие экземпляры, которые на много лучше моего. Например, BioLite CampStove, его цена 7900 руб. Мой экземпляр сделан на скорую руку для написания этой статьи и дальнейших экспериментов.

Основой является элемент Пельтье. Это термоэлектрический модуль, используемый в кулерах для воды и переносных холодильниках, так же его применяют для охлаждения процессора. При подаче на него напряжения, одна сторона охлаждается, а другая нагревается. Мы же наоборот будем греть одну сторону, чтобы получить электричество.

Главный принцип в том чтобы одна сторона нагревалась, а другая оставалась неизменной, для максимальной эффективности нужен перепад температур в 100 градусов по Цельсию.

Приступим!
Нам понадобится:
— Элемент Пельтье, я использовал TEC1-12710
— Не нужный блок питания от компа
Любой, даже тот, который сгорел, и выгорело всё кроме корпуса
— Стабилизатор напряжения
DC-DC Boost Module, Входное напряжение 1-5 Вольт, на выходе всегда 5В.
— Радиатор (чем больше, тем лучше), желательно с кулером на 5В, т.к. радиатор будет постепенно нагреваться. Зимой это не грозит, так как можно поставить радиатор на лед.
— Термопаста
— Набор инструментов

Модуль TEC1-12710, рассчитан на 10 А (есть меньше, есть больше). Но более мощные будут большего размера. Чем больше сила тока, тем он эффективней и дороже. Я купил в алиэкспресс примерно за 250 руб. У нас в магазинах электроники такой стоит около 1500 руб.

Модуль рассчитан на максимальное напряжение 12В, но столько он не выдает из-за низкого КПД, когда мы используем его в обратном направлении, т.е. на получение тока.

Для того чтобы было стабильно 5 вольт и устройства заряжались безопасно, нужен повышающий стабилизатор. Он начинает выдавать 5 Вольт, когда на элементе Пельтье еще только 1. О том, что всё готово к зарядке, можно узнать по горящему светодиоду на модуле.
Можете собрать свой, я же решил довериться китайцам, они предлагают готовый модуль с USB выходом, за 80 руб. на том же сайте.

Распотрошим наш блок питания. Мне пришлось сделать дополнительные дырки для лучшей циркуляции воздуха (блок питания попался очень уж древний).

Главный принцип в том, чтобы воздух засасывало снизу, и выходил он через верх. Проще говоря, нужно сделать обычную печку. Не забудьте предусмотреть отверстие для подкидывания щепок и подставку под котелок или кружку для кипячения воды, если вам это нужно.
Далее к ровной стенке нужно прикрепить модуль Пельтье с радиатором, предварительно равномерно нанеся термопасту. Чем плотнее контакт, тем лучше. Та сторона, где написана модель – холодная, именно к ней мы прикладываем радиатор. Если вы перепутали, модуль не будет выдавать напряжение, в этом случае нужно просто поменять провода местами.
Припаиваем повышающий преобразователь, и находим, куда его спрятать. Можно вообще оставить его висеть на проводах, но обязательно нужно заизолировать, например, одеть на него термоусадку.

Собираем всё вместе. Вот что должно получиться:

Как это работает?

Закидываем внутрь ветки, щепки, в общем, всё то, что горит. Затем разжигаем. Огонь нагревает стенки печки и элемент Пельтье, который на одной из этих стенок. Другая сторона элемента, которая на радиаторе, остается при уличной температуре. Чем больше разница температур, тем больше мощность, но не переборщите.

Максимальная эффективность достигается уже при разнице в 100 градусов. Со временем радиатор начинает нагреваться, и его нужно будет охлаждать. Можно подбрасывать снег, поливать водой, поставить радиатором на лед или в воду, поставить на него кружку с холодной водой. Вариантов много, самый простой это кулер, он будет забирать часть мощности, но за счет охлаждения общий результат не измениться.
НЕ допускайте воздействие больших температур на элемент, он может перегореть и сгореть. В документации указана максимальная температура 180 °С, но особо беспокоится не стоит, с хорошим охлаждением и на простых дровах ничего с ним не будет.

Если вы не будете ленится и всё правильно сделаете, то получите вот такую простую щепочницу на которой можно подогревать еду, кипятить, воду и одновременно заряжать свои гаджеты.

Её можно использовать дома, если отключили электричество, поставив внутрь свечку. Кстати если подключить к ней светодиоды, но свет будет на много ярче чем от самой свечки.

В любом месте где можно найти что-то горящее, у вас будет электричество, тепло и возможность удобно готовить еду, расходуя меньше горючего по сравнению с костром.

Первые испытания!

Пошел после работы в лес, солнце почти село, хворост мокрый, но печь оправдала себя на 100%.

Результат превзошёл все мои ожидания. Сразу после разгорания щепок, загорелся индикатор, я подключи телефон и он начал заряжаться. Зарядка шла стабильно.

Преобразователь вообще не напрягался. Еще я брал с собой охлаждающую подставку для ноутбука, на ней 2 кулера и светодиоды, должно прилично потреблять. Подключил, всё крутится, светится, ветерок дует. Брал еще USB вентилятор, подключил в конце, когда остались одни угли. Всё отлично крутится, даже не знаю что еще можно попробовать.

Результат:

Всё прекрасно работает выдает свои пол Ампера. Все таки нужен кулер, т.к. за пол часа радиатор нагрелся порядка 40 градусов, летом это будет еще больше. Пускай крутиться себе.

Языки пламени вырываются высоко вверх, мне лично такого костра не надо, буду закрывать часть отверстий, чтобы горело медленней.

Буду делать все по новой, возьму за основу стандартную щепочницу которую делают из консервных банок, но сделаю из метала потолще и прямоугольной формы. Куплю хороший радиатор с кулером подходящей формы и постараюсь сделать разборный вариант, чтобы при переноске занимало меньше места.

Получение питьевой воды с помощью модуля Пельтье

This entry was posted in Ремонт. Bookmark the <a href="https://kabel-house.ru/remont/printsip-raboty-termoelektricheskogo-holodilnika/" title="Permalink to Принцип работы термоэлектрического холодильника" rel="bookmark">permalink</a>.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *