Применение светодиодов

Примеры использования светодиодов

Как только производство светодиодов достигло промышленно значимых масштабов, началось их повсеместное внедрение. Использование светодиодов в наши дни настолько обширно, что если оглянуться вокруг, то почти наверняка на глаза попадется что-нибудь, где есть светодиоды. Чем объясняется такая их популярность?

Все просто: светодиод – это очень эффективный, безопасный, и недорогой источник света, который отвечает многим запросам по освещению, не уступая ни лампам накаливания, ни неоновым лампам, и на самом деле, существенно превосходя их все. Где же используются светодиоды, каковы сферы их применения? Ответ на этот вопрос мы и попробуем здесь дать.

В первую очередь обратим внимание на то, что многие жидкокристаллические экраны, например, экраны телевизоров, мониторов, дисплеи мобильных телефонов, и разнообразных мобильных гаджетов, имеют светодиодную подсветку. Это касается как старых моделей, так и новейших, ибо меняются сами светодиоды, но суть остается неизменной.

Например, подсветка дисплея Retina в ноутбуке Apple MacBook Pro, осуществляется 48 яркими светодиодами, расположенными внизу дисплея, свет которых преобразуется системой рассеивания, благодаря чему дисплей отображает картинку наилучшим для человеческого восприятия образом.

Одиночные светодиоды в качестве индикаторов включения на лицевых панелях различных бытовых приборов давно стали нормой. Здесь можно вспомнить индикаторы режима ожидания телевизора или DVD-плеера, свидетельствующие о том, что прибор включен в розетку. Сюда же относится подсветка жидкокристаллических часов на том же DVD-плеере, и аналогичные подсветки часов на других бытовых устройствах, на кухонной технике, и т.д.

Подсветка приборов в автомобиле заслуживает особого внимания, поскольку это неразрывно связано с обеспечением безопасности жизни людей, как пассажиров, так и пешеходов. Использование здесь светодиодов открывает также широкие возможности для тюнинга, и все ограничивается лишь творческим подходом хозяина автомобиля.

Говоря об автомобилях и об индикации, нельзя не упомянуть светодиодные дорожные знаки. За последние пару лет их все чаще можно встретить как на улицах мегаполисов, так и на широких автострадах.

Что касается светофоров, то в них давно используют светодиоды, и появление мощных светодиодов в последние годы делает свет светофоров более качественным, более комфортным для водителей.

Уличное светодиодное освещение – важный шаг к энергосбережению в масштабах городов. В уличных фонарях используют мощные светодиоды, которые позволяют многократно экономить электроэнергию, а срок их службы существенно превосходит любые другие лампы, достигая 50000 часов.

Пример использования светодиодов в освещении — уличные светильники УСС, которые отличаются совей многофункциональностью и лакончиным дизайном. Средний срок службы таких светильников — около 20 лет.

Мощные светодиоды применяются также в промышленных прожекторах на предприятиях, ими сейчас заменяют индустриальные лампы. Служат они для освещения оборудования, установок, и просто как источники света в больших производственных помещениях, цехах большой площади, и т.п.

Бытовое светодиодное освещение заслуживает особого внимания. В первую очередь важно отметить, что компактные люминесцентные лампы уже могут быть заменены светодиодными лампами, отличающимися повышенной экономичностью и долговечностью. Это касается и потолочных встраиваемых светильников, и ночников, а также декоративной подсветки.

Декоративная подсветка – поистине всеобъемлющее применение светодиодов, а особенно — светодиодных лент. Светящиеся знаки на стенах, узоры на дверях комнат, узоры на стенах, «звездное небо» на потолке, световое зонирование пространства в жилище, — это все далеко не полный список декоративных решений.

Дежурное или ночное освещение, подсветка ступенек, подсветка мебели, делающая обычные предметы интерьера яркими и необычными, подсветка сувениров на стеллажах, и многое другое. Как видим, для светового оформления интерьера светодиоды подходят идеально.

Примечательно и световое оформление интерьеров автомобилей, способное придать индивидуальность каждому салону.

Внешнее светодиодное оформление автомобиля – еще один способ создания индивидуального стиля.

Не обойдутся без тюнинга и фары. Мощные лампы уже могут быть заменены на светодиодные.

При снижении нагрузки на генератор, световой поток остается достаточно сильным, это важное преимущество светодиодной технологии по сравнению как с обычными, так и с галогенными лампами накаливания.

Существование светодиодов основных оттенков (красный, синий, зеленый) создает огромные возможности построения больших рекламных дисплеев для отображения полноценной анимации.

Это и просто светодиодные вывески с графикой различных оттенков и цветов, и гигантские полотна, как огромный экран, простирающийся на 500 метров над главной улицей Лас-Вегаса, состоящий из 12,5 миллионов светодиодов.

Светодиодные бегущие строки и световые коробы, в которых также использованы светодиоды, давно стали привычным рекламным атрибутом магазинов и прочих заведений, где владельцы всегда применяют современные методы визуального привлечения внимания потенциальных посетителей.

Светодиоды применяют для передачи модулированного оптического излучения по оптоволокну, также они успешно работают в высокоскоростных оптронах.

Светодиодные лампы применяются и в растениеводстве. Светодиодные лампы мощностью 8 Вт могут использоваться в теплицах, оранжереях, и садах, где растения по каким-то причинам не получают достаточного количества света.

Светодиодное освещение улучшает фотосинтез растений, поскольку специально предназначенные для них светодиодные лампы обладают более высокой светоотдачей, у них отсутствует тепловое излучение, а главное – это нужный спектр света.

Специальные светодиодные лампы для растений комбинируют две длины волны, состоящие на 1 часть из синего (450-460 нм) и на 8 частей из красного света (650-670 нм), либо на 6 частей из красного и на 3 из синего. Здесь отсутствует ультрафиолетовое и инфракрасное излучение, поэтому такие лампы абсолютно безопасны как для любых растений, так и для окружающей среды.

Несколько примеров использования светодиодов на практике из других статей на Электрик Инфо:

Об использовании светодиодов, устройство светодиода, как зажечь светодиод

Хорошие и плохие схемы включения светодиодов

Применение светодиодов в электронных схемах

Регулирование яркости светодиодов

Как подключить светодиод к осветительной сети

Применение светодиодных лент

Как подключить светодиодную ленту

Самодельный светильник из светодиодной ленты

Применение диодов

Диоды являются одними из самых распространенных электронных компонентов. Они присутствуют практически во всех электронных приборах, которые мы ежедневно используем – от мобильного телефона до его зарядного устройства. В этой статье рассмотрим основные типы электронных схем, в которых диоды нашли свое применение.

1. Нелинейная обработка аналоговых сигналов

В связи с тем, что диоды относятся к элементам нелинейного типа, они применяются в детекторах, логарифматорах, экстрематорах, преобразователях частоты и в других устройствах, в которых предполагается нелинейная обработка аналоговых сигналов. В таких случаях диоды используют или как основные рабочие приборы – для обеспечения прохождения главного сигнала, или же в качестве косвенных элементов, например в цепях обратной связи. Указанные выше устройства значительно отличаются между собой и используются для разных целей, но применяемые диоды в каждом из них занимают очень важное место.

2. Выпрямители

Устройства, которые используются для получения постоянного тока из переменного называются выпрямителями. В большинстве случаев они включают в себя три главных элемента – это силовой трансформатор, непосредственно выпрямитель (вентиль) и фильтр для сглаживания. Диоды применяют в качестве вентилей, так как по своим свойствам они отлично подходят для этих целей.

3. Стабилизаторы

Устройства, которые служат для реализации стабильности напряжения на выходе источников питания, называются стабилизаторами. Они бывают разных видов, но каждый из них предполагает применение диодов. Эти элементы могут использоваться либо в цепях, отвечающих за опорные напряжения, либо в цепях, которые служат для коммутации накопительной индуктивности.

4. Ограничители

Ограничители – это специальные устройства, используемые для того, чтобы ограничивать возможный диапазон колебания различных сигналов. В цепях такого типа широко применяются диоды, которые имеют прекрасные ограничительные свойства. В сложных устройствах могут использоваться и другие элементы, но большинство ограничителей базируются на самых обычных диодных узлах стандартного типа.

5. Устройства коммутации

Диоды нашли применение и в устройствах коммутации, которые используются для того, чтобы переключать токи или напряжения. Диодные мосты дают возможность размыкать или замыкать цепь, которая служит для передачи сигнала. В работе применяется некоторое управляющее напряжение, под воздействием которого и происходит замыкание или размыкание. Иногда управляющим может быть сам входной сигнал, такое бывает в самых простых устройствах.

6.Логические цепи

В логических цепях диоды применяются для того, чтобы обеспечить прохождение тока в нужном направлении (элементы «И», «ИЛИ»). Подобные цепи используются в схемах аналогового и аналогово-цифрового типа. Здесь перечислены только основные устройства, в которых применяются диоды, но существует и много других, менее распространенных.

Светодиоды

Светодиоды представляют собой полупроводниковые диоды, которые излучают свет при прохождении через них электрического тока. Они могут излучать разные цвета и делятся на такие типы — 3 мм, 5мм, 8мм, SMD 0603, Top type, мигающий диод, диод с резистором, Star PCB, Emitter. В сравнении с традиционными лампами светодиоды обладают многими преимуществами – это экономичность, прочность, яркость света, долговечность, низкий нагрев в процессе работы. Что касается недостатков, то главным из них является цена, так как подобные приборы стоят достаточно дорого. Рассмотрим различные виды светодиодных устройств, которые чаще всего применяются на практике.

1. Одиночные светодиоды

Подобные устройства широко используются в самой разной аппаратуре в качестве лампочек индикации, которые чаще всего свидетельствуют о том, включен или выключен прибор. Кроме того, они применяются для освещения различных небольших пространств, например в автомобилях.

2. 7’Segment

Технология Seven-Segment Display с использованием светодиодов применяется в электронных часах, в различных измерительных приборах и в других технических средствах, которые предполагают отображение цифровой информации на дисплее. В таких целях светодиоды используются еще с 1910 года, но они не потеряли своей актуальности и сейчас. 7’Segment позволяет отображать простейшие данные на дисплее самым простым способом и с низкими энергозатратами.

3. Матрица светодиодов

Светодиодная матрица представляет собой определенное количество светодиодов, которые размещаются на одной площадке. Главные характеристики таких устройств это яркость и размеры. Большое количество применяемых диодов позволяет добиться высоких показателей освещения. Устанавливаются подобные матрицы чаще всего в специальных плафонах, которые могут использоваться в различных местах, например в салоне автомобиля, в его бардачке или в багажнике.

4. LED телевизоры

LED телевизоры – это телевизоры, принцип работы которых основывается на использовании светодиодов. Они дают возможность добиться хорошего качества изображения и позволяют экономить на электроэнергии. Благодаря небольшим размерам таких диодов, телевизионные экраны имеют значительно меньшую толщину, чем у традиционных моделей. Кроме того, подобные устройства характеризуются надежностью и достаточно большим сроком службы. Все телевизоры, изготовленные по этой технологии, имеют боковую подсветку экрана и подсветку за матрицей.

Как видим, несмотря на свою простоту, диоды нашли применение в самых разнообразных технических областях, и без их использования работа многих устройств весьма проблематична. Следует заметить, что диоды находят и новые сферы применения.

История создания и развития диодов

Схематическое изображение вакуумного диода:
в стеклянной лампе в центре разогреваемый катод, по периферии — анод. Справа — обозначение лампового диода на схемах
Слева — типичные представители полупроводниковых диодов. На корпусе прибора катод обозначается кольцом или точкой. Справа — обозначение (по ГОСТ 2.730-73) выпрямительного полупроводникового диода на схемах

Развитие диодов началось в третьей четверти XIX века сразу по двум направлениям: в 1873 году болгарский учёный Фредерик Гутри открыл принцип действия термионных диодов (вакуумных ламповых с прямым накалом), в 1874 году немецкий учёный Карл Фердинанд Браун открыл принцип действия кристаллических (твёрдотельных) диодов.

Принципы работы термионного диода были заново открыты 13 февраля 1880 года Томасом Эдисоном, и затем, в 1883 году, запатентованы (патент США № 307031). Однако дальнейшего развития в работах Эдисона идея не получила. В 1899 году немецкий учёный Карл Фердинанд Браун запатентовал выпрямитель на кристалле. Джэдиш Чандра Боус развил далее открытие Брауна в устройство, применимое для детектирования радио. Около 1900 года Гринлиф Пикард создал первый радиоприёмник на кристаллическом диоде. Первый термионный диод был запатентован в Британии Джоном Амброзом Флемингом (научным советником компании Маркони и бывшим сотрудником Эдисона) 16 ноября 1904 года (патент США № 803684 от ноября 1905 года). 20 ноября 1906 года Пикард запатентовал кремниевый кристаллический детектор (патент США № 836531).

В конце XIX века устройства подобного рода были известны под именем выпрямителей, и лишь в 1919 году Вильям Генри Иклс ввёл в оборот слово «диод», образованное от греческих корней «di» — два, и «odos» — путь.

Ключевую роль в разработке первых отечественных полупроводниковых диодов в 1930-х годах сыграл советский физик Б. М. Вул.

Типы диодов

Диоды бывают электровакуумными (кенотроны), газонаполненными (газотроны, игнитроны, стабилитроны коронного и тлеющего разряда), полупроводниковыми и др. В настоящее время в подавляющем большинстве случаев применяются полупроводниковые диоды.

Диоды
Полупроводниковые Не полупроводниковые
Газозаполненные Вакуумные

Ламповые диоды

Основная статья: Электровакуумный диод

Ламповые диоды представляют собой радиолампу с двумя рабочими электродами, один из которых подогревается проходящим через него током из специальной цепи накала или отдельной нитью накала. Благодаря этому часть электронов покидает поверхность разогретого электрода (катода) и под действием электрического поля движется к другому электроду — аноду. Если электрическое поле направлено в противоположную сторону, поле препятствует движению электронов, и тока (практически) нет.

Полупроводниковые диоды

Полупроводниковый диод в стеклянном корпусе. На фотографии виден полупроводник с подходящими к нему контактами Основная статья: Полупроводниковый диод

Полупроводниковый диод состоит либо из полупроводников p-типа и n-типа (полупроводников с разным типом примесной проводимости), либо из полупроводника и металла (диод Шоттки). Контакт между полупроводниками называется p-n переходом и проводит ток в одном направлении (обладает односторонней проводимостью).

Специальные типы диодов

Цветные светодиодыСветодиод ультрафиолетового спектра излучения (увеличен)

  • Стабилитрон (диод Зенера) — диод, работающий в режиме обратимого пробоя p-n-перехода (см. обратную ветвь вольт-амперной характеристики). Используются для стабилизации напряжения.
  • Туннельный диод (диод Лео Эсаки) — диод, в котором используются квантовомеханические эффекты. На вольт-амперной характеристике имеет область так называемого отрицательного дифференциального сопротивления. Применяются как усилители, генераторы и пр.
  • Обращённый диод — диод, имеющий гораздо более низкое падение напряжения в открытом состоянии, чем обычный диод. Принцип работы такого диода основан на туннельном эффекте.
  • Точечный диод — диод, отличающийся низкой ёмкостью p-n-перехода и наличием на обратной ветви вольт-амперной характеристики участка с отрицательным дифференциальным сопротивлением. Ранее использовались в СВЧ технике (благодаря низкой ёмкости p-n-перехода) и применялись в генераторах и усилителях (благодаря наличию на обратной ветви вольт-амперной характеристики участка с отрицательным дифференциальным сопротивлением).
  • Варикап (диоды Джона Джеумма) — диод, обладающий большой ёмкостью при запертом p-n-переходе, зависящей от величины приложенного обратного напряжения. Применяются в качестве конденсаторов переменной ёмкости, управляемых напряжением.
  • Светодиод (диоды Генри Раунда) — диод, отличающийся от обычного диода тем, что при протекции прямого тока излучает фотоны при рекомбинации электронов и дырок в p-n-переходе. Выпускаются светодиоды с излучением в инфракрасном, видимом, а с недавних пор — и в ультрафиолетовом диапазоне.
  • Полупроводниковый лазер — диод, близкий по устройству к светодиоду, но имеющий оптический резонатор. Излучает узкий луч когерентного света.
  • Фотодиод — диод, в котором под действием света появляется значительный обратный ток. Также, под действием света, подобно солнечному элементу, способен генерировать небольшую ЭДС.
  • Солнечный элемент — диод, похожий на фотодиод, но работающий без смещения. Падающий на p-n-переход свет вызывает движение электронов и генерацию тока.
  • Диод Ганна — диод, используемый для генерации и преобразования частоты в СВЧ диапазоне.
  • Диод Шоттки — диод с малым падением напряжения при прямом включении.
  • Лавинный диод — диод, принцип работы которого основан на лавинном пробое (см. обратный участок вольт-амперной характеристики). Применяется для защиты цепей от перенапряжений.
  • Лавинно-пролётный диод — диод, принцип работы которого основан на лавинном умножении носителей заряда. Применяется для генерации колебаний в СВЧ-технике.
  • Магнитодиод — диод, вольт-амперная характеристика которого существенно зависит от значения индукции магнитного поля и расположения его вектора относительно плоскости p-n-перехода.
  • Стабистор — диод, имеющий в начале прямой ветви вольт-амперной характеристики участок, позволяющий использовать его для стабилизации небольших напряжений (обычно от 0.5 до 3.0 В). В отличии от стабилитрона, у стабистора это напряжение мало зависит от температуры.
  • Смесительный диод — диод, предназначенный для перемножения двух высокочастотных сигналов.
  • pin-диод — диод, обладающий меньшей ёмкостью за счёт наличия между сильнолегированными полупроводниками p- и n-типов материала, характеризующегося собственной проводимостью. Используется в СВЧ технике, силовой электронике, как фотодетектор.

Классификация и система обозначений

Классификация диодов по их назначению, физическим свойствам, основным электрическим параметрам, конструктивно-технологическим признакам, роду исходного материала (полупроводника) отображается системой условных обозначений их типов. Система условных обозначений постоянно совершенствуется в соответствии с возникновением новых классификационных групп и типов диодов. Обычно системы обозначений представлены буквенно-цифровым кодом.

СССР

На территории СССР система условных обозначений неоднократно претерпевала изменения и до настоящего времени на радиорынках можно встретить полупроводниковые диоды, выпущенные на заводах СССР и с системой обозначений согласно отраслевого стандарта ГОСТ 11 336.919-81, базирующегося на ряде классификационных признаков изделий. Итак,

  1. первый элемент буквенно-цифрового кода обозначает исходный материал (полупроводник), на основе которого изготовлен диод, например:
    • Г или 1 — германий или его соединения;
    • К или 2 — кремний или его соединения;
    • А или 3 — соединения галлия (например, арсенид галлия);
    • И или 4 — соединения индия (например, фосфид индия);
  2. второй элемент — буквенный индекс, определяющий подкласс приборов;
    • Д — для обозначения выпрямительных, импульсных, магнито- и термодиодов;
    • Ц — выпрямительных столбов и блоков;
    • В — варикапов;
    • И — туннельных диодов;
    • А — сверхвысокочастотных диодов;
    • С — стабилитронов, в том числе стабисторов и ограничителей;
    • Л — излучающие оптоэлектронные приборы;
    • О — оптопары;
    • Н — диодные тиристоры;
  3. третий элемент — цифра (или в случае оптопар — буква), определяющая один из основных признаков прибора (параметр, назначение или принцип действия);
  4. четвёртый элемент — число, обозначающее порядковый номер разработки технологического типа изделия;
  5. пятый элемент — буквенный индекс, условно определяющий классификацию по параметрам диодов, изготовленных по единой технологии.

Например: КД212Б, ГД508А, КЦ405Ж.

Кроме того, система обозначений предусматривает (в случае необходимости) введение в обозначение дополнительных знаков для выделения отдельных существенных конструктивно-технологических особенностей изделий.

Россия

Продолжает действовать ГОСТ 2.730-73 — «Приборы полупроводниковые. Условные обозначения графические».

Этот раздел статьи ещё не написан. Согласно замыслу одного или нескольких участников Википедии, на этом месте должен располагаться специальный раздел.
Вы можете помочь проекту, написав этот раздел. Эта отметка установлена 31 января 2017 года.

Импортные радиодетали

Существует ряд общих принципов стандартизации системы кодирования для диодов за рубежом. Наиболее распространены стандарты EIA/JEDEC и европейский «Pro Electron».

EIA/JEDEC

Дополнительные сведения: Electronic Industries Alliance и Joint Electron Devices Engineering Council

Стандартизированная система EIA370 нумерации 1N-серии была введена в США EIA/JEDEC (Объединённый инженерный консилиум по электронным устройствам) приблизительно в 1960 году. Среди самого популярного в этой серии были: 1N34A/1N270 (германиевый), 1N914/1N4148 (кремниевый), 1N4001—1N4007 (кремниевый выпрямитель 1A) и 1N54xx (мощный кремниевый выпрямитель 3A).

Pro Electron

Дополнительные сведения: Pro Electron

Согласно европейской системе обозначений активных компонентов Pro Electron, введённой в 1966 году и состоящей из двух букв и числового кода:

  1. первая буква обозначает материал полупроводника:
    • A — Germanium (германий) или его соединения;
    • B — Silicium (кремний) или его соединения;
  2. вторая буква обозначает подкласс приборов:
    • A — сверхвысокочастотные диоды;
    • B — варикапы;
    • X — умножители напряжения;
    • Y — выпрямительные диоды;
    • Z — стабилитроны, например:
  • AA-серия — германиевые сверхвысокочастотные диоды (например, AA119);
  • BA-серия — кремниевые сверхвысокочастотные диоды (например: BAT18 — диодный переключатель)
  • BY-серия — кремниевые выпрямительные диоды (например: BY127 — выпрямительный диод 1250V, 1А);
  • BZ-серия — кремниевые стабилитроны (например, BZY88C4V7 — стабилитрон 4,7V).

Другие

Другие распространённые системы нумерации/кодирования (обычно производителем) включают:

  • GD-серия германиевых диодов (например, GD9) — это очень старая система кодирования;
  • OA-серия германиевых диодов (например, OA47) — кодирующие последовательности разработаны британской компанией Mullard.

Система JIS маркирует полупроводниковые диоды, начиная с «1S».

Кроме того, многие производители или организации имеют свои собственные системы общей кодировки, например:

  • HP диод 1901-0044 = JEDEC 1N4148
  • Военный диод CV448 (Великобритания) = Mullard типа OA81 = GEC типа GEX23

Графическое изображение

Шаблон:Main article

Графические символы различных типов диодов используемые на электрических схемах в соответствии с их функциональным назначением. треугольник указывает направление тока от анода к катоду (прямая проводимость).

  • Диод

  • Светоизлучающий диод (Светодиод)

  • Диод супрессор (Защитный диод; TVS)

Уравнение Шокли для диода

Уравнение Шокли для идеального диода (названо в честь изобретателя транзистора Уильяма Шокли) характеризует диод, обладающий идеальной вольт-амперной характеристикой для прямого и обратного тока. Уравнение Шокли для идеального диода:

I ( V ) = I S ( e V / ( n V T ) − 1 ) , {\displaystyle I(V)=I_{\mathrm {S} }\left(e^{V/(nV_{\mathrm {T} })}-1\right),}

где

I — ток, проходящий через диод; IS — ток насыщения диода (максимальная величина обратного тока без учёта пробоя); V — напряжение на диоде; VT — термическое напряжение диода; n — коэффициент неидеальности, известный также как коэффициент эмиссии.

Коэффициент неидеальности n обычно лежит в пределах от 1 до 2 (хотя в некоторых случаях может быть выше) в зависимости от процесса изготовления и полупроводникового материала. Во многих случаях предполагается, что n примерно равно 1 (таким образом, коэффициент n в формуле опускается). Коэффициент неидеальности не является частью уравнения диода Шокли и был добавлен для учёта несовершенства реальных переходов. Поэтому в предположении n = 1 уравнение сводится к уравнению Шокли для идеального диода.

Термическое напряжение VT приблизительно составляет 25,85 мВ при 300 K (температура, близкая к «комнатной температуре», обычно используемой в программах моделирования). Для конкретной температуры его можно найти по формуле:

V T = k T q , {\displaystyle V_{\mathrm {T} }={\frac {kT}{q}}\,,}

где

  • k — постоянная Больцмана;
  • T — абсолютная температура p-n-перехода;
  • q — элементарный заряд электрона.

Ток насыщения IS не является постоянным для каждого диода, зависит от температуры значительно больше напряжения VT. Напряжение V обычно уменьшается при увеличении T при фиксированном I.

Уравнение Шокли для идеального диода( или закон диода) получено с допущением, что единственными процессами, вызывающими ток в диоде, является дрейф (под действием электрического тока), диффузия и термическая рекомбинация. Также полагалось, что ток в p-n-области, вызванный термической рекомбинацией, незначителен.

Применение диодов

Диодные выпрямители

Трёхфазный выпрямитель А. Н. Ларионова на трёх полумостах

Диоды широко используются для преобразования переменного тока в постоянный (точнее, в однонаправленный пульсирующий; см. выпрямитель). Диодный выпрямитель или диодный мост (то есть 4 диода для однофазной схемы, 6 — для трёхфазной полумостовой схемы или 12 — для трёхфазной полномостовой схемы, соединённых между собой по схеме) — основной компонент блоков питания практически всех электронных устройств. Диодный трёхфазный выпрямитель по схеме А. Н. Ларионова на трёх параллельных полумостах применяется в автомобильных генераторах, преобразует переменный трёхфазный ток генератора в постоянный ток бортовой сети автомобиля. Применение генератора переменного тока в сочетании с диодным выпрямителем вместо генератора постоянного тока с щёточно-коллекторным узлом позволило значительно уменьшить размеры автомобильного генератора и повысить его надёжность.

В некоторых выпрямительных устройствах до сих пор применяются селеновые выпрямители. Это вызвано той их особенностью, что при превышении предельно допустимого тока, происходит выгорание селена (участками), не приводящее (до определённой степени) ни к потере выпрямительных свойств, ни к короткому замыканию — пробою.

В высоковольтных выпрямителях применяются селеновые высоковольтные столбы из множества последовательно соединённых селеновых выпрямителей и кремниевые высоковольтные столбы из множества последовательно соединённых кремниевых диодов.

Если соединено последовательно и согласно (в одну сторону) несколько диодов, пороговое напряжение, необходимое для отпирания всех диодов, увеличивается.

Диодные детекторы

Основная статья: Детектор (электронное устройство)

Диоды в сочетании с конденсаторами применяются для выделения низкочастотной модуляции из амплитудно-модулированного радиосигнала или других модулированных сигналов. Диодные детекторы применяются в радиоприёмных устройствах (радиоприёмниках, телевизорах и им подобных). При работе диода используется квадратичный участок вольт-амперной характеристики.

Диодная защита

Диоды применяются для защиты устройств от неправильной полярности включения, защиты входов схем от перегрузки, защиты ключей от пробоя ЭДС самоиндукции, возникающей при выключении индуктивной нагрузки и другого.

Два входа защищены диодными цепочками. Внизу — трёхвыводная защитная диодная сборка в сравнении со спичечной головкой

Для защиты входов аналоговых и цифровых схем от перегрузки используется цепочка из двух диодов, подключённых к шинам питания в обратном направлении. Защищаемый вход подключается к средней точке этой цепочки. При нормальной работе диоды закрыты и почти не оказывают влияния на работу схемы. При уводе потенциала входа за пределы питающего напряжения один из диодов открывается и шунтирует вход схемы, ограничивая таким образом допустимый потенциал входа диапазоном в пределах питающего напряжения плюс прямое падение напряжения на диоде. Такие цепочки могут быть уже включены в состав ИС на этапе проектирования кристалла, либо предусматриваться при разработке схем узлов, блоков, устройств. Выпускаются готовые защитные сборки из двух диодов в трёхвыводных «транзисторных» корпусах.

Для сужения или расширения диапазона защиты вместо потенциалов питания необходимо использовать другие потенциалы в соответствии с требуемым диапазоном. При защите от мощных помех, возникающих на длинных проводных линиях, например, при грозовых разрядах, может потребоваться использование более сложных схем, вместе с диодами включающих в себя резисторы, варисторы, разрядники.

Диодная защита ключа, коммутирующего индуктивную нагрузку

При выключении индуктивных нагрузок (таких как реле, электромагниты, магнитные пускатели, электродвигатели) возникает ЭДС самоиндукции:

E i = − L d I d t {\displaystyle {\mathcal {E}}_{i}=-L{\frac {dI}{dt}}} ,

где

  • L {\displaystyle L} — индуктивность;
  • I {\displaystyle I} — ток через индуктивность;
  • t {\displaystyle t} — время.

ЭДС самоиндукции препятствует уменьшению силы тока через индуктивность и «стремится» поддержать ток на прежнем уровне. При выключении тока энергия магнитного поля, созданного индуктивностью, должна где-то рассеяться. Магнитное поле, создаваемое индуктивной нагрузкой, обладает энергией:

W = L I 2 2 {\displaystyle W={\frac {LI^{2}}{2}}} ,

где

  • L {\displaystyle L} — индуктивность;
  • I {\displaystyle I} — ток через индуктивность.

Таким образом, после отключения индуктивность сама становится источником тока и напряжения, а возникающее на закрытом ключе напряжение может достигать высоких значений и приводить к искрению и обгоранию контактов механических и пробою полупроводниковых ключей поскольку в этих случаях энергия будет рассеиваться непосредственно на само́м ключе. Диодная защита является простой и одной из широко распространённых схем, позволяющих защитить ключи с индуктивной нагрузкой. Диод включается параллельно катушке так, что в рабочем состоянии диод закрыт. При отключении тока возникающая ЭДС самоиндукции направлена против ранее приложенного к индуктивности напряжения; эта противо-ЭДС открывает диод; ранее шедший через индуктивность ток продолжает течь через диод и энергия магнитного поля рассеется на нём, не вызывая повреждения ключа.

В схеме защиты с только одним диодом напряжение на катушке будет равным падению напряжения на диоде в прямом направлении — порядка 0,7-1,2 В, в зависимости от величины тока. Из-за малости этого напряжения ток будет спадать довольно медленно, и для ускорения выключения нагрузки может потребоваться использование более сложной защитной схемы: стабилитрон последовательно с диодом, диод в комбинации с резистором, варистором или резисторно-ёмкостной цепочкой.

Диодные переключатели

Диодные переключатели применяются для коммутации высокочастотных сигналов. Управление осуществляется постоянным током, разделение ВЧ и управляющего сигнала — с помощью конденсаторов и индуктивностей.

Диодная искрозащита

Основная статья: Барьер искрозащиты

Этим не исчерпывается применение диодов в электронике, однако другие схемы, как правило, весьма узкоспециальны. Совершенно другую область применимости имеют специальные диоды, поэтому они будут рассмотрены в отдельных статьях.

Интересные факты

Этот раздел представляет собой неупорядоченный список разнообразных фактов о предмете статьи. Пожалуйста, приведите информацию в энциклопедический вид и разнесите по соответствующим разделам статьи. Согласно решению Арбитражного комитета Википедии, списки предпочтительно основывать на вторичных обобщающих авторитетных источниках, содержащих критерий включения элементов в список. (27 декабря 2018)

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 27 декабря 2018 года.

  • В первые десятилетия развития полупроводниковой технологии точность изготовления диодов была настолько низкой, что приходилось делать «разбраковку» уже изготовленных приборов. Так, диод Д220 мог, в зависимости от фактически получившихся параметров, маркироваться и как переключательный (Д220А, Б), и как стабистор (Д220С). Радиолюбители широко использовали его в качестве варикапа.
  • Диоды могут использоваться как датчики температуры.
  • Диоды в прозрачном стеклянном корпусе (в том числе и современные SMD-варианты) могут обладать паразитной чувствительностью к свету (то есть радиоэлектронное устройство работает по-разному в корпусе и без корпуса, на свету). Существуют радиолюбительские схемы, в которых обычные диоды используются в качестве фотодиода и даже в качестве солнечной батареи.

Примечания

  1. Словарь по кибернетике / Под редакцией академика В. С. Михалевича. — 2-е. — Киев: Главная редакция Украинской Советской Энциклопедии имени М. П. Бажана, 1989. — 751 с. — (С48). — 50 000 экз. — ISBN 5-88500-008-5.
  2. 1 2 www.yourdictionary.com: суффикс -од (ode) (недоступная ссылка с 22-05-2013 — история, копия) (англ.)
  3. 1 2 А. В. Баюков, А. Б. Гитцевич, А. А. Зайцев и др. Полупроводниковые приборы: диоды, тиристоры, оптоэлектронные приборы. Справочник / Под ред. Н. Н. Горюнова. — 2-е изд., перераб. — М.: Энергоатомиздат, 1984 год. — С. 13—31. — 744 с., ил с. — 100 000 экз.
  4. Diode Архивировано 26 апреля 2006 года.
  5. About JEDEC. Jedec.org. Дата обращения 22 сентября 2008. Архивировано 4 августа 2012 года.
  6. EDAboard.com. News.elektroda.net (10 июня 2010). Дата обращения 6 августа 2010. Архивировано 4 августа 2012 года.
  7. I.D.E.A. Transistor Museum Construction Projects Point Contact Germanium Western Electric Vintage Historic Semiconductors Photos Alloy Junction Oral History. Semiconductormuseum.com. Дата обращения 22 сентября 2008. Архивировано 4 августа 2012 года.
  8. Классификация и испытание грозозащит. «Сетевые решения», издательство «Нестор» (15 апреля 2004). — (Защита оборудования Ethernet). Дата обращения 27 апреля 2012. Архивировано 30 мая 2012 года.
  9. Некоторые вопросы использования газоразрядных приборов для защиты линий Ethernet. «Сетевые решения», издательство «Нестор» (12 мая 2008). Дата обращения 27 апреля 2012. Архивировано 30 мая 2012 года.
  10. Барнс Дж. Электронное конструирование: Методы борьбы с помехами = John R. Barnes. Electronic System Design: Interference And Noise Control Techniques. — Prentice-Hall, 1987. — Пер. с англ. — М.: Мир, 1990. — С. 78–85. — 238 с. — 30 000 экз. — ISBN 5-03-001369-5 (рус.), ISBN 0-13-252123-7 (англ.).

This entry was posted in Ремонт. Bookmark the <a href="https://kabel-house.ru/remont/primenenie-svetodiodov/" title="Permalink to Применение светодиодов" rel="bookmark">permalink</a>.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *