Почему гудит трансформатор

КАК УСТРАНИТЬ ГУДЕНИЕ ТРАНСФОРМАТОРА

Трансформаторы перематывать не боюсь и не ленюсь, при этом честно признаюсь, что имею дело только со вторичкой (вторичной обмоткой). Для любителя, по нынешним временам, за глаза будет. В подавляющем большинстве случаев результат стараний положительный, трансформаторы работают без нареканий и с проблемой их шумной работы как-то не сталкивался. А тут «нашла коса на камень» — перематывал уже трижды и всё гудит, причём недопустимо сильно. Провод вторички был 0,86 мм (верхний слой залит лаком), а учитывая, что стал мотать практически 1 мм, возможно, ничего удивительного в образовавшемся шуме и нет. Но он не нужен, категорически.

Советы по выходу из создавшейся ситуации давно известны, но специального лака для пропитки в наличии нет и покупать как минимум 1 кг такового для использования 10 – 15 грамм не собираюсь. Есть ещё рекомендация пропитать, а точнее проварить в течении нескольких минут намотанную катушку в стеарине. Но опять загвоздка, это же сколько свечек надо чтобы, даже в небольшой кастрюльке образовалась достаточная глубина погружения? Раздумья навели на вариант. Решил попробовать. Растопленный стеарин нанёс на намотанный, на катушку слой провода плоской деревянной палочкой. Поверх него слой бумажной изоляции.

Сделал это так. В отрезанное от металлической баночки из под газировки донышко с бортиками высотой 20 мм, искрошил имевшийся в моём распоряжении кусок стеариновой хозяйственной свечки, растопил его, поставив на конфорку электроплиты и вставил в середину нечто подобия фитиля, скатанного из льняных ниток. Получилось нечто подобие свечки в корпусе. Поджёг фитиль и когда огонь растопил стеарин, деревянной палочкой стал наносить стеарин на ряды провода и слегка втирать его между ними для более плотного заполнения пустот. И так каждый последующий слой намотанного на катушку провода. Между слоями поверх стеарина бумажную прокладку. На поверку всё оказалось элементарно просто.

Дабы эксперимент не омрачила какая-то мелочь при сборке, места возможного зазора между катушкой и железом проложил (заполнил) прокладками из картона. Операция простая, но требует внимания, малая толщина прокладки оставит зазор (вот и возможная причина шума), излишняя толщина прокладки не даст сомкнуться торцам магнитопровода (опять плохо).

Перед заключением трансформатора в металлическую стяжку предварительно решил послушать получившуюся громкость его гудения при работе. Для этого очень плотно обмотал магнитопровод семью витками изоляционной ленты и включил. И не услышал вообще никакого звука. Было искушение придвинутся к нему поближе ухом, но сдержался – 220 вольт сетевого напряжения достойны уважительного к себе отношения. Упаковал трансформатор в металлическую стяжку, поставил по месту и подключил вольтметр, который и показал выходное напряжение понижающего трансформатора – удостоверил факт его работоспособности.

Почему гудит трансформатор

Учительница спрашивает Вовочку: — Вовочка, а кем работает твой папа? — Трансформатором, Марья Ивановна. — А это как так? — Ну, он 380 рублей получает, 220 маме отдает, а на остальные 160 гудит…

А почему гудит трансформатор? Вы когда-нибудь задумывались об этом? Кто-то скажет что это от того, что плохо закреплены между собой витки или обмотки колеблются, стукаясь о железо. Может быть площадь сердечника оказалась меньше требуемой по расчетам или слишком много вольт на виток получилось при намотке? А соответствует ли подаваемая частота данному материалу сердечника? Давайте, однако, разбираться.

На самом деле причиной гудения трансформатора изначально является магнитострикция. Магнитострикцией называется явление изменения размеров и формы ферромагнитного тела под действием переменного магнитного поля.

Размеры и форма ферромагнитных тел зависят от состояния их намагниченности. Джеймс Джоуль в 1842 r. впервые обнаружил, что при внесении в магнитное поле железа последнее меняет свою форму, удлиняясь по одним направлениям относительно поля и укорачиваясь по другим. Объем тела тела при этом заметно не менялся.

Итак, если ферромагнетик поместить в магнитное поле, то это прежде всего приведет к изменению его результирующей намагниченности. Одновременно с этим будет происходить изменение размеров тела из-за тoгo, что спонтанная намагниченность меняет своё направление в различных участках тела, а следовательно, меняется и направление спонтанных деформаций в них. Это свойство, которое присуще всем телам (ферромагнетикам лишь в наиболее яркой форме).

Кроме магнитострикции причинами шума могут быть работающие масляные насосы и вентиляторы систем охлаждения мощных трансформаторов. Электродинамические усилия в обмотках и электромеханические устройства, регулирующие напряжение под нагрузкой, также создают шум.

В существенной степени уровень этого шума зависит от величины электромагнитной нагрузки и габаритных размеров трансформатора. И в основе шума именно вибрация ферромагнитного магнитопровода, сопровождающая магнитострикцию. Степень выраженности явления зависит от величины магнитной индукции, а также от структуры и от физических характеристик самой электротехнической стали. Далее вибрация передается маслу и опорам сердечника, а от масла и опор сердечника — непосредственно баку.

Поскольку длина волны для сетевой частоты в трансформаторном масле составляет приблизительно 12 метров, а стенка бака расположена на небольшом расстоянии от сердечника, то бак полностью принимает и воспроизводит соответствующие вибрации близлежащих частей сердечника.

Иногда прочие источники шума оказываются громче, например та же система активного охлаждения, однако в целом доминирует именно магнитный шум сердечника, вызванный магнитострикцией.

Под действием переменного магнитного поля, сердечник испытывает переменные магнитострикционные деформации. И если бы листы стали, из которых набран сердечник, испытывали бы растяжения прямо пропорционально квадрату магнитной индукции, то магнитострикционные колебания обладали бы одной устойчивой частотой, равной 100 Гц для сетевых 50 Гц. Однако на деле эта зависимость не прямопропорциональна, и колебания, а за ними и вибрация бака, выдают шум с высшими гармониками.

Как для холоднокатаной, так и для горячекатаной электротехнических сталей данные по относительному количественному удлинению при магнитострикции имеются. Горячекатаная листовая сталь с повышенным содержанием кремния практически полностью препятствует проявлению магнитострикции, и 6% кремния, добавленные в трансформаторную сталь, почти блокируют ее. Но такую сталь невозможно применять в трансформаторах в силу не лучших механических ее характеристик.

У холоднокатаной стали, при том же значении магнитной индукции, относительное удлинение оказывается меньше, чем у стали горячекатаной. Но в силу того, что индукция в сердечниках из холоднокатаной стали превосходит индукцию для стали горячекатаной, удлинения сердечников оказываются приблизительно одинаковыми.

Исследования показали, что шум магнитопровода из горячекатаной стали при значении индукции в 1,35 Тл соответствует шуму холоднокатаной стали при магнитной индукции 1,55 Тл. А при увеличении индукции в сердечнике трансформатора из холоднокатаной стали на 0,1 Тл, шум становится сильнее на 8 дБ.

Трансформаторный сердечник может также попасть в резонанс с колебаниями от магнитострикции, да еще и с гармониками вибраций в магнитопроводе. Если магнитопровод или детали трансформатора угодят в резонанс с данными гармониками, то диапазон шума с ярко выраженными пиками охватит кратные гармоники удвоенной сетевой частоты.

Экспериментально подтверждено, что гармоники вибраций магнитопровода особо ярко выражены при высоких значениях магнитной индукции, когда происходит переход нелинейного участка кривой намагничивания при наличии обилия гармоник магнитострикционных вибраций.

Одна из главных составляющих этого шума в трансформаторе принадлежит поперечным колебаниям листов. Эти отчетливые вибрации возникают вследствие различия листов по длине и толщине, в итоге коэффициенты удлинения для каждого листа различны, а это ведет к изменению зазора сочленений в функции мгновенных значений индукции.

Это ведет к перераспределению во времени магнитных потоков между соседними листами, и в итоге получаются поперечные вибрации листов. Магнитный поток изменяется во времени, а вместе с ним и степень насыщения ферромагнетика. Кривая намагниченности искажается, и как следствие, появляются высшие гармоники и шум магнитострикции.

Важно, что длина сердечника изменяется уже не только от магнитострикции, но и под действием магнитных сил, которые возникают при переходе магнитного потока от пластины к пластине. Так получается тогда, когда параллельно расположенные пластины отличаются магнитной проницаемостью.

Экспериментально подтверждено, что как продольные, так и поперечные колебания листов порождают вибрации и шум приблизительно одинаковой интенсивности. Поэтому, даже если полностью подавить один из источников шума трансформатора, общий шум не снизится более чем на 3 дБ.

Реакторы, дроссели, имеющие конструктивные воздушные зазоры, отличает шум, вызванный именно магнитными силами. Между двумя частями, разделенными зазором, возникают переменно силы притяжения с удвоенной частотой намагничивания.

Шум, вызываемый электродинамическими силами в обмотках трансформатора, работающего под нагрузкой, как правило довольно тих, если отсутствуют осевые люфты, как это свойственно для упругой прессовки обмоток. Поэтому от нагрузки уровень этого шума трансформатора практически не зависит.

Данное положение позволяет нормировать уровень шума трансформатора. Однако характер и величина нагрузки все же связаны с магнитной индукцией в трансформаторной стали в процессе работы, поэтому уровень магнитного шума с мощностью нагрузки все же связан.

Надеемся, что эта небольшая статья позволила неискушенному читателю получить ответ на вопрос, почему же гудит трансформатор.

Это интересно: Как узнать мощность и ток трансформатора по его внешнему виду

Андрей Повный

Понятие магнитострикции

Чтобы разобраться, почему сильно гудит усилитель, блоки питания различных бытовых приборов или иные трансформаторы, следует рассмотреть азы работы этой техники. Трансформатором называется агрегат, который призван преобразовывать электрический ток в соответствии с требованиями потребителя. Прибор состоит в самом простом виде из таких частей:

  1. Сердечник (магнитопривод).
  2. Первичный контур.
  3. Вторичный контур.

Магнитопривод состоит из железных пластин, характеризующихся ферромагнитными свойствами. В процессе прохождения по первичной обмотке электрического тока появляется магнитное поле. Оно способствует возникновению во вторичном контуре энергии. Частота тока остается неизменной. В зависимости от количества витков катушек напряжение в сети может увеличиваться или уменьшаться.

Магнитострикцией же называется эффект, который приводит к изменению размера тела, через которое проходит поток заряженных частиц. На подобные изменения реагируют материалы с сильными магнитными характеристиками. Из них изготавливают сердечник.

Изменения размеров влияют на появление колебаний воздуха возле магнитопривода. Возникают звуковые волны. Они имеют определенную частоту. Возникает гудение. В импульсных устройствах такого звука не слышно. Их колебания формируются с частотой, которую не воспринимает ухо человека.

Силовой трансформатор

Среди всех разновидностей трансформаторов одним из самых востребованных является силовой тип. Если такой агрегат гудел раньше тихо, но потом шум усилился, это может свидетельствовать о нарушениях структуры сердечника. Его пластины со временем могут разойтись. Потребуется устранить зазоры, создать хорошую стяжку. Проще всего такой ремонт производится для прибора броневого типа. Для этого применяется обычный сантехнический хомут, который затягивается по периметру магнитопривода.

Возможно, трансформатор не только стал сильно шуметь, но и нагреваться. Это говорит о повышенной токовой нагрузке. Причиной такому явлению может стать межвитковое замыкание, неисправности в цепи потребителя.

Также рекомендуем ознакомиться: как проводят ремонт силовых трансформаторов?

Диагностика

Чтобы отремонтировать оборудование, потребуется произвести его диагностику. Сначала исключается возможность межвиткового замыкания. Мультиметром такую неисправность определить затруднительно. В этом случае потребуется произвести поверхностный осмотр. Если визуально определяются подтеки, почернение, сгоревшая изоляция, можно сказать, что причина гудения установлена.

Если поверхностный осмотр не выявил отклонений, потребуется произвести более глубокую диагностику. При наличии только мультиметра можно воспользоваться одним из двух возможных подходов:

  1. Тестер переводится в положение мегомметра. Определив тип устройства, следует сравнить результаты замера с номинальным значением (представлено в соответствующем справочнике). Если отклонение составляет более 50%, в трансформаторе появилось межвитковое замыкание.
  2. Измеряют аналогичный рабочий прибор. При этом исследуется сопротивление обмоток. Если их расхождение составляет 20%, причина заключается в замыкании между витками.

Если диагностика проводится для понижающего трансформатора, можно включить его в сеть и проверить напряжение на кабеле вторичной обмотки. Если появится дым, потрескивание, систему сразу же обесточивают. Неисправна первичная обмотка.

Перемотка

Если пользователь силового прибора сделал перемотку самостоятельно, существует большая вероятность появления гула. Причин тому может быть несколько:

  • Магнитопровод собран или подогнан неправильно. Часто неприятность возникает при перемотке Ш-подобного сердечника.
  • Катушка не закреплена хорошо.
  • Обмотка намотана неплотно. Пропитать ее можно парафином.
  • Расчет витков произведен неправильно. В этом случае определяется не только шум, но и нагрев. Расчет потребуется произвести снова, устранить допущенные ошибки.

Интересное видео: Перемотка трансформатора своими руками

Чтобы выполнить перемотку правильно, рекомендуется обратиться к профессионалам. Если же пользователь желает научиться выполнять такое действие самостоятельно, необходимо рассмотреть тонкости этого процесса.

Перемотка Ш-подобного сердечника

Гул после перемотки определяется именно в Ш-подобном типе магнитопровода. В процессе проведения операции необходимо максимально уменьшить потери вихревых токов. С одной стороны каждая пластина изолируется лаком. После проведения перемотки каждую деталь поочередно устанавливают на сердечник.

Когда половина работы будет проделана, необходимо вставить две пластины с одной стороны сердечника. Их не нужно задвигать до конца. Далее продолжается сборка. Когда магнитопровод будет собран приблизительно на 2/3, в оставшиеся части необходимо поставить еще Ш-подобные пластины. Оставшиеся элементы нужно установить между двух выдвинутых в центре частей. Их осторожно забивают киянкой. Пластины не должны гнуться. В завершении сборки потребуется вставить торцевые элементы конструкции.

Почему воздушные зазоры в трансформаторе делают минимальными?

Стр 1 из 3

Трансформаторы

Почему воздушные зазоры в трансформаторе делают минимальными?

1) Для увеличения механической прочности сердечника.

2) Для уменьшения намагничивающей составляющей тока холостого хода.

3) Для уменьшения магнитного шума трансформатора.

4) Для увеличения массы сердечника.

Почему сердечник трансформатора выполняют из электротехнической стали?

1) Для уменьшения тока холостого хода.

2) Для уменьшения намагничивающей составляющей тока холостого хода.

3) Для уменьшения активной составляющей тока холостого хода.

4) Для улучшения коррозийной стойкости.

Почему пластины сердечника трансформатора стягивают шпильками?

1) Для увеличения механической прочности.

2) Для крепления трансформатора к объекту.

3) Для уменьшения влаги внутри сердечника.

4) Для уменьшения магнитного шума.

Почему сердечник трансформатора выполняют из электрически изолированных друг от друга пластин электротехнической стали?

1) Для уменьшения массы сердечника.

2) Для увеличения электрической прочности сердечника.

3) Для уменьшения вихревых токов.

4) Для упрощения конструкции трансформатора.

Как обозначаются начала первичной обмотки трехфазного трансформатора?

1) a, b, c 2) x, y, z 3) A, B, C 4) X, Y, Z

Как соединены первичная и вторичная обмотки трехфазного трансформа-

тора, если трансформатор имеет 11 группу (Y – звезда, ∆ – треугольник)?

1) Y/∆ 2) ∆/Y 3) Y/Y 4) ∆/∆

На каком законе электротехники основан принцип действия трансформатора?

1) На законе электромагнитных сил.

2) На законе Ома.

3) На законе электромагнитной индукции.

4) На первом законе Кирхгофа.

8. Что произойдет с трансформатором, если его включить в сеть постоянного напряжения той же величины?

1) Ничего не произойдет.

2) Может сгореть.

3) Уменьшится основной магнитный поток.

4) Уменьшится магнитный поток рассеяния первичной обмотки. 5

Что преобразует трансформатор?

1) Величину тока.

2) Величину напряжения.

3) Частоту.

4) Величины тока и напряжения.

На что влияет ЭДС самоиндукции первичной обмотки трансформатора?

1) Увеличивает активное сопротивление первичной обмотки.

2) Уменьшает активное сопротивление первичной обмотки.

3) Уменьшает ток первичной обмотки трансформатора.

4) Увеличивает ток вторичной обмотки трансформатора.

5) Увеличивает ток первичной обмотки трансформатора.

На что влияет ЭДС самоиндукции вторичной обмотки трансформатора?

1) Увеличивает активное сопротивление вторичной обмотки.

2) Уменьшает активное сопротивление вторичной обмотки.

3) Уменьшает ток вторичной обмотки трансформатора.

4) Увеличивает ток первичной обмотки трансформатора.

5) Уменьшает индуктивное сопротивление вторичной обмотки

трансформатора.

12. Что произойдет с током первичной обмотки трансформатора, если нагрузка трансформатора увеличится?

1) Не изменится.

2) Увеличится.

3) Уменьшится.

4) Станет равным нулю.

Выберите правильное написание коэффициента трансформации трансформатора.

В каком режиме работает измерительный трансформатор напряжения?

1) В режиме холостого хода.

2) В режиме близком к режиму холостого хода.

3) В номинальном режиме.

4) В режиме короткого замыкания.

5) В режиме близком к режиму короткого замыкания.

Что произошло с нагрузкой трансформатора, если ток первичной обмотки уменьшился?

1) Осталась неизменной.

2) Увеличилась.

3) Уменьшилась.

4) Сопротивление нагрузки стало равным нулю.

В каком режиме работает измерительный трансформатор тока?

1) В режиме холостого хода.

2) В режиме близком к режиму холостого хода.

3) В номинальном режиме.

4) В режиме короткого замыкания.

5) В режиме близком к режиму короткого замыкания.

17. Два трансформатора одинаковой мощности Тр1 и Тр2, подключенные к одной питающей сети переменного тока, включены параллельно и работают на общую нагрузку. Коэффициенты трансформации обоих трансформаторов одинаковы, а напряжение короткого замыкания трансформатора Тр1 больше, чем напряжение короткого замыкания трансформатора Тр2 (U1к1> U1к2). Что будет происходить с трансформаторами:

1) Будут перегреваться оба трансформатора.

2) Будет перегреваться Тр2.

3) Оба трансформатора будут нормально работать.

4) Будет перегреваться Тр1.

5) В нагрузке не будет никакого тока, т.е. оба трансформатора не будут

работать.

18. Первичная обмотка автотрансформатора имеет W1=600 витков, коэффициент трансформации К=20. Определить число витков вторичной обмотки W2.

1) W2=12000. 2) W2=30. 3) W2=580.

4) W2=620. 5) W2=36000.

19. Однофазный двух обмоточный трансформатор испытали в режиме холостого хода и получили следующие данные: номинальное напряжение U1н=220 В, ток холостого хода I0=0,25 А, потери холостого хода Рхх= 6 Вт. Определить коэффициент мощности cosϕ трансформатора при холостом ходе.

1) cosϕ ≈ 0,05

2) cosϕ ≈ 0,11

3) cosϕ ≈ 0,21

4) cosϕ ≈ 0,01

5) cosϕ ≈ 0,35

20. Определить число витков W2 вторичной обмотки трансформатора напряжения, если первичная обмотка рассчитана на напряжение U1 = 6000 В и имеет W1=12000 витков, а вторичная – на U2 = 100 В.

1) W2=2000 витков.

2) W2=2 витка.

3) W2=200 витков.

4) W2=60 витков.

5) W2=120 витков.

Асинхронные двигатели

Почему пусковой момент асинхронного двигателя при введении реостата в фазный ротор увеличивается?

1) Увеличивается индуктивное сопротивление ротора.

2) Увеличивается активное сопротивление ротора.

3) Увеличивается активная составляющая роторного тока.

4) Уменьшается роторный ток.

Синхронные машины

Какой ток компенсирует синхронный компенсатор?

1) Активный.

2) Емкостной.

3) Индуктивный.

4) Активно-индуктивный.

5) Активно-емкостной.

This entry was posted in Ремонт. Bookmark the <a href="https://kabel-house.ru/remont/pochemu-gudit-transformator/" title="Permalink to Почему гудит трансформатор" rel="bookmark">permalink</a>.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *