Содержание
- Огнеупорные материалы для стен вокруг печей
- Виды огнеупорных материалов для стен
- Производители и марки
- Вывод
- Виды и защитные свойства огнеупорных листовых материалов для печей и каминов
- Виды ОЛМ
- Огнестойкие листовые материалы для печных и каминных защитных экранов
- Огнеустойчивые стеновые обшивки
- Светоотражательная обшивка
- Обшивка с облицовкой
- Облицовка стен листовым огнеупорным материалом
- Тугоплавкие металлы
- Определение
- Свойства
- Применение
- Общие свойства тугоплавких металлов
- Для дополнительного чтения
- Самая полная информация про огнеупорные материалы!
- Формованные и неформованные огнеупорные материалы
- Алюмосиликатные огнеупорные материалы
- Шамотные огнеупорные материалы
- Магнезиальные огнеупорные материалы
- Другие огнеупорные материалы
- Технические и эксплуатационные характеристики
- Классификация
- Сфера применения
- Производство ОЛМ
- ОЛМ для стен
- ОЛМ для бани
- Резюмируем
- Оклейка печи стеклообоями
- Работа по оклейке печи стеклообоями
- Что такое стеклообои и для чего они подходят
- Как оклеить комнату стеклообоями
- Подготовка печи
- Как раскроить стеклообои
Огнеупорные материалы для стен вокруг печей
Если у вас есть печь, то вы точно должны знать об огнеупорных материалах для стен вокруг печей. Это залог долгой эксплуатации самой печи и защита вашего жилища от высоких температур при работе печки.
Свернуть
Виды огнеупорных материалов для стен
На сегодняшний день существует множество материалов, которые защищают печи от перегрева и, чего хуже, воспламенения.
Материалы можно разделить на виды по способу отдачи тепла:
- Есть те, которые отражают тепло, они направлены на то, чтоб отбить излучение от горения всередину помещения;
- И те, которые правда защищают при помощи физ. и хим. характеристик.
Сложно сказать, что из этого более эффективно. И кроме того, не всегда удается разделить конкретный материал по такому критерию. Самые внушительные смеси для внутреннего использования в печи могут выдержать такую температуру, как 1500 градусов! А то и выше.
Также огнеупорные материалы для отделки стен под печь могут быть разделены на группы по сырью, что используют при их изготовлении:
- Органические материалы чаще всего не отличаются огнеупорностью, поэтому их используют редко. Или снаружи, для стен.
- Неорганические используют же почти всегда. Они способны защитить даже легковоспламеняющиеся поверхности.
- Смешанные также обеспечивают надежную защиту. К ним относят сбестоизвестковые или кремнеземные смеси.
Теплоизоляционныедля печи может выдерживать очень широкий диапазон температур. По такому признаку из разделяют на:
- 1500-1800 градусов;
- 1800-2000 градусов;
- 2000-3000 градусов;
- Больше 3000 градусов.
Еще в древние времена люди поняли, что место вокруг печи нужно защищать от воздействия жара. С тех пор технологии поменялись, одни материалы ушли в небытие, а другие продолжают быть популярными:
Огнестойкие гипсокартонные плиты
Пожалуй, лучший материал для обшивки стены вокруг натопленной печи. Также важным моментом является то, что плиту можно покрасить в абсолютно любой цвет, и она хорошо впишется в любой интерьер. Можно уверенно сказать, что этот материал пользуется спросом у профессионалов.
Такие характеристики плит можно выделить:
- Могут до 30- 40 минут без нагреваться без деформирования
- Не загораются до одного часа даже при деформировании;
- Параметры: – 120 на 250 на 1,25;
- Защищены сверху огнеупорным гипсокартоном и стойкими соединениями внутри
- Торцы закрыты от внешних раздражителей;
- Широкий выбор вариантов установки.
Огнеупорный лист для печей такого типа в прошлом году проходил тестирования и показал довольно стабильные результаты. Без всяких сомнений, самым прочным этот материал не назовешь, но он достойный конкурент.
Огнеупорные минеритовые плиты
Экологически чистый материал, который не только не вредит окружающей среде. Но и не воздействует на здоровье человека. Минеритовые плиты удобно монтируются вплотную к стене. Для особой прочности, можно понтировать сразу два листа.Существует только один нюанс: при креплении двух листов сразу, нужно учитывать, что при нагревании лист может увеличиться в размерах. Огнеупорная плита для печи бывает в наличии почти во всех узкоспециализированных магазинах, достать ее не проблема.
Защитные нержавеющие листы
Это довольно дорогой материал, который сможет абсолютно надежно защитить ваши стены от перегревания. Цена соответствует качеству материала. Часто их используют, устанавливая котлы.
Чтобы сделать защиту максимальной, устанавливают дополнительно внутрь еще шар стекловолокна с термозащитой. Тогда эта конструкция выдержит любые температуры, даже не деформируясь. При выборе волокон, обратите внимание на их состав, некоторые могут быть вредными для дыхательных путей.
Жаропрочный материал из базальтовых волокон
Наверное, самый прочный материал из всех перечисленных. Он с легкостью выдерживает высокие температуры, до 900 градусов, абсолютно не меняя свою форму.
- негорючесть (+ 1100 градусов);
- нет вредных паров, которые могут выделяться при горении или плавлении материала;
- материал устойчив к вибрациям;
- также устойчив к кислотам;
- высокая прочность материала;
- обладает хорошей звукоизоляцией;
- также хорошая теплоизоляция;
- нетяжелый, а значит простой в установке.
Из недостатков можно выделить:
- не способен впитывать влагу из воздуха;
- отсутствие усадки.
Листы суперизола для изоляции стен
Листы суперизола для изоляции стен – это многофункциональный материал, который позволит легко защитить стену, без различных нюансов в установке. Конкретным преимуществом является небольшой вес материала.
Это одновременно и вид изоляции от перегрева поверхностей, и обшивка стен декоративным материалом.
Такие листы широко представлены на рынке. Известно о них пока не так много, как он некоторых других материалах, но интерес со стороны изготовителей к ним не может не радовать.
Изоляция стен термостойкими терракотовыми плитками
Это полностью экологический материал. Материал хорошо сдерживает пары и стойкий к огню.
Жаростойкие панели для отделки стен возле печи не пользуются большой популярностью. Достать их не так легко в России. Но если заранее сделать заказ, то вы не пожалеете об ожидании.
Производители и марки
Жаропрочные материалы для печей представлены на рынке очень хорошо. Большое количество производителей и широкий диапазон цен говорит о том, что продукт ходовой и компании стараются сделать как наиболее качественный продукт, чтобы превзойти конкурентов. В данном списке приведены примеры разных типов материалов, от разных производителей и из разных ценовых групп.
- Противопожарная плита от компании «FireFix», стоит от 1000 до 1200 рублей и имеет кроме всего еще и влагостойкий элемент.
- Теплоизоляционные плиты от «FLAMMA». Их стоимость не переваливает за 1000 рублей. Более того, они бывают разных цветов и размеров.
- Зеркальный отражающий экран от той же фирмы из нержавеющей стали. Его цена может меняться от 800 до 1500 рублей.
- Стекломагнезитовый лист (СМЛ) 10 мм. Стоимость: 1000 рублей за лист. Очень прочный и надежный. Отечественного производства.
- Плиты «Суперизол» 1220x1000x50 стоит уже намного больше: 7000 рублей за одну плиту. Материал намного дольше держится, чем обычные листы. Производитель тоже отечественный.
- Плиты из каменной ваты от знаменитой фирмы ROCKWOOL. Их плюс в том, что они легкие и продаются целыми пачками. Цена за одну упаковку – 800 рублей. В упаковке 8 штук.
- Огнеупорное керамическое стекловолокно. Продается рулоном. Цена немалая, но стоит того. Стоимость одного рулона – от 4500 рублей. В ее состав входит каолин, который усиливает свойства.
- Вермикулитовая вата 1200х600 российского производства. Стоит от 1500 до 2300 рублей. Не отличается сверхкачествами, но довольно популярна на отечественном рынке.
- Базальтовая вата от компании «ROCKWOOL». Стоит 1500 рублей за упаковку. Отличаются жесткостью и прочностью.
- Плиты на основе базальта от фирмы «Парок». Стоимость не переваливает за 1000 рублей. Основной нюанс в том, что эти плиты не выдерживают самых высоких температур и требуют еще дополнительной защиты.
Термостойкая ткань для печей импортного производства тоже может быть очень надежным конкурентам остальным типам материалов. Цена слегка завышена, но с этим можно мериться, поняв специфику использования ткани.
Вывод
Теплоизоляционные материалы для печей – важная составляющая самой печи, без которой не выйдет грамотно обустроить работу.
Также, стоит добавить, что очень важно выбрать правильный материал, прочно установить его и не переплатить за это огромных денег. Благо, что материалов сейчас огромное количество и изучив их, можно для себя понять, какой именно подойдет вашей печке или стене.
Огнеупорные декоративные панели для печей могут не только защитить вас, но и дополнить интерьер. Эксперты говорят о том, что выбор утепляющего материала должен происходить, как выбор обоев. Листы, панели или плиты должны грамотно вписываться в общую картину комнаты, особенно, если речь идет о печке внутри дома.
Очень часто шамотные плиты для печей смогут скрасить ваш строгий интерьер в доме и добавить к нему некую изюминку.
Термостойкая изоляция для печей – это не роскошь, это необходимость. Можно даже сказать, что это важный элемент печи, без которого обойтись нельзя. Оборудуя вашу печь, не забудьте сразу составить список нужных материалов для термоизоляции поверхности вокруг печи.
Виды и защитные свойства огнеупорных листовых материалов для печей и каминов
Огнеупорные листовые материалы для печей и каминов
Для обустройства отопительных конструкций нужны, в том числе, огнеупорные листовые материалы для каминов и печей, поскольку топочные устройства в процессе эксплуатации разогреваются до высоких температур.
Только тогда они в состоянии отдать тепло окружающему пространству. При этом осуществляется нагрев поверхностей, особенно стен, которые размещены ближе всего к печи или камину. И, чтобы избежать пожара, из подобных композитов изготавливают также экраны и обшивки, которым следует иметь еще и эстетический вид.
Виды ОЛМ
Это, в том числе, асбест и металл.
Асбестовым листам характерно выдерживание продолжительного нагревания до +500 °С. Слабо проводящие тепло, они не теряют прочность и употребляются для устройства огнестойких стен.
Стальные пластины в виде элементов печей и каминов укладываются перед дверцами этих отопительных систем.
Огнестойкие листовые материалы для печных и каминных защитных экранов
Защитные экраны из стальных листов в большей степени употребляются для металлических топочных изделий для изоляции их боковых стенок. Они устанавливаются на расстоянии до 5 см от стенок отопительного прибора и снижают тепловое излучение.
Экраны бывают боковыми и фронтальными. С их помощью понижается температура на наружных поверхностях топочных систем до +100 °С, что отражается на улучшении пожаробезопасности. Монтаж удобных защитных экранов простой и осуществляется прикреплением их к полу посредством специальных ножек.
Боковой защитный экран
Огнеустойчивые стеновые обшивки
Как вариант, для защиты окружающего пространства от нагревания работающих отопительных изделий является создание теплоотражающей обшивки. Ее обустраивают, чтобы избежать воспламенения в случае, если стена помещения плотно прилегает к печной или каминной поверхности и чрезмерно нагревается.
Жаростойкие экраны для банных печей. Часть 1
Светоотражательная обшивка
Эффективно использование обшивки, состоящей из огнеупорных листов в комбинации с негорючими теплоизоляционными композитами.
Огнестойкие листовые материалы крепятся поверх термоизоляции, предпочтительнее для такой обшивки брать листы нержавеющей стали, поскольку оцинкованные при нагревании могут выделять в воздух токсичные вещества. Чтобы защита была более эффективной, стальной лист полируется до зеркальной степени: так тепловые лучи лучше отсвечиваются от металла, и стена нагревается еще меньше.
Обшивка стены плитами минерита
Существует целый ряд ОЛМ для обшивки:
- базальтовый картон, выполненный из базальтового волокна, обеспечивает хорошую тепло- и звукоизоляцию;
- асбестовый картон отличается долговечностью и прочностью;
- минерит, из его листов изготавливают также защитные экраны для печей и каминов.
Обшивка с облицовкой
Облицовка поверхности минерита плиткой из талькохлорита
Для нее берут такие огнеупорные листовые материалы:
- огнеустойчивый гипсокартон — он выполнен с добавлением стекловолокна и не деформируется под действием теплового излучения;
- минерит, для него также характерна высокая влагостойкость и способность не разрушаться под воздействием повышенной температуры;
- стекломагниевый лист выполняется из стеклоткани (в ней магнезиальное вещество выступает как вяжущее), он способен противостоять высоким температурам.
Жаростойкие экраны для банных печей. Часть 2
Облицовка стен листовым огнеупорным материалом
Чтобы обеспечить пожаробезопасное состояние помещения, нужно грамотно подбирать материал для обшивки стен, возле которых располагается отопительная конструкция.
И вермикулитовые панели причислены к наиболее эффективным ОЛМ. При этом такие плиты применяются для обеспеченности пожаробезопасности в различных помещениях, включая предприятия атомной и нефтеперерабатывающей промышленности.
Среди достоинств огнеупорных вермикулитовых плит отмечены их:
Вермикулитовые плиты
- экологичность;
- огнестойкость;
- термоизоляция;
- шумоизоляция;
- эстетичный облик, что позволяет их использовать на видных местах.
Где применяются
Вермикулитовые панели, благодаря своим отличным эксплуатационным качествам, могут использоваться на многих направлениях.
Схема термозащиты стены и облицовки камина вермикулитовой плитой
- Для теплоизоляции каминов и печей.
- Для защиты от действия огня конструкций из разных материалов.
- Для обеспеченности противостояния пожароопасности многообразных объектов.
- Для гарантированной огнеупорности различных предметов в помещениях, включая печи и камины.
Вермикулитовые плиты, как представители ОЛМ, монтируются просто и быстро и не требуют для этого профессиональной подготовки. Обработка ими со всех сторон печи или камина обеспечивает защиту помещения от воздействия огня и высоких температур, и потому такие огнеупорные листовые материалы являются оптимальными в решении проблемы, связанной с пожаробезопасностью помещения.
Все образцы огнеупорных листовых материалов для печей и каминов – современная, высокосортная продукция. Кроме огнезащиты, они снабжают отопительные устройства стойкостью к различного рода повреждениям, в том числе механическим и химическим.
Тугоплавкие металлы
Тугоплавкие металлы | Расширенная группа тугоплавких металлов |
См. также: Тугоплавкие сплавы
Тугоплавкие металлы — класс химических элементов (металлов), имеющих очень высокую температуру плавления и стойкость к изнашиванию. Выражение тугоплавкие металлы чаще всего используется в таких дисциплинах как материаловедение, металлургия и в технических науках. Определение тугоплавких металлов относится к каждому элементу группы по-разному. Основными представителями данного класса элементов являются элементы пятого периода — ниобий и молибден; шестого периода — тантал, вольфрам и рений. Все они имеют температуру плавления выше 2000 °C, химически относительно инертны и обладают повышенным показателем плотности. Благодаря порошковой металлургии из них можно получать детали для разных областей промышленности.
Определение
Большинство определений термина тугоплавкие металлы определяют их как металлы имеющие высокие температуры плавления. По этому определению, необходимо, чтобы металлы имели температуру плавления выше 4,000 °F (2,200 °C). Это необходимо для их определения как тугоплавких металлов. Пять элементов — ниобий, молибден, тантал, вольфрам и рений входят в этот список как основные, в то время как более широкое определение этих металлов позволяет включить в этот список ещё и элементы имеющие температуру плавления 2123 K (1850 °C) — титан, ванадий, хром, цирконий, гафний, рутений и осмий. Трансурановые элементы (которые находятся за ураном, все изотопы которых нестабильны и на земле их найти очень трудно) никогда не будут относиться к тугоплавким металлам.
Свойства
Физические свойства
Название | Ниобий | Молибден | Тантал | Вольфрам | Рений |
---|---|---|---|---|---|
Температура плавления | 2750 K (2477 °C) | 2896 K (2623 °C) | 3290 K (3017 °C) | 3695 K (3422 °C) | 3459 K (3186 °C) |
Температура кипения | 5017 K (4744 °C) | 4912 K (4639 °C) | 5731 K (5458 °C) | 5828 K (5555 °C) | 5869 K (5596 °C) |
Плотность | 8,57 г·см³ | 10,28 г·см³ | 16,69 г·см³ | 19,25 г·см³ | 21,02 г·см³ |
Модуль Юнга | 105 ГПа | 329 ГПа | 186 ГПа | 411 ГПа | 463 ГПа |
Твёрдость по Виккерсу | 1320 МПа | 1530 МПа | 873 МПа | 3430 МПа | 2450 МПа |
Температура плавления этих простых веществ самая высокая, исключая углерод и осмий. Данное свойство зависит не только от их свойств, но и от свойств их сплавов. Металлы имеют кубическую сингонию, исключая рений, у которого она принимает вид гексагональной плотнейшей упаковки. Большинство физических свойств элементов в этой группе существенно различается, потому что они являются членами различных групп.
Сопротивление к деформации ползучести является определяющим свойством тугоплавких металлов. У обычных металлов деформация начинается с температуры плавления металла, а отсюда деформация ползучести в алюминиевых сплавах начинается от 200 °C, в то время как у тугоплавких металлов она начинается от 1500 °C. Это сопротивление к деформации и высокая температура плавления позволяет тугоплавким металлам быть использованными, например, в качестве деталей реактивных двигателей или при ковке различных материалов.
Химические свойства
На открытом воздухе подвергаются окислению. Эта реакция замедляется в связи с формированием пассивированного слоя. Оксид рения является очень неустойчивым, потому что при пропускании плотного потока кислорода его оксидная плёнка испаряется. Все они относительно устойчивы к воздействию кислот.
Применение
Тугоплавкие металлы используются в качестве источников света, деталей, смазочных материалов, в ядерной промышленности в качестве АРК, в качестве катализатора. Из-за того, что они имеют высокие температуры плавления, они никогда не используются в качестве материала для выплавки на открытом месте. В порошкообразном виде материал уплотняют с помощью плавильных печей. Тугоплавкие металлы можно переработать в проволоку, слиток, арматуру, жесть или фольгу.
Вольфрам и его сплавы
Основная статья: Вольфрам
Вольфрам был найден в 1781 г. Шведским химиком Карлом Вильгельмом Шееле. Вольфрам имеет самую высокую температуру плавления среди всех металлов — 3422 °C (6170 °F)
Рений используется в сплавах с вольфрамом в концентрации до 22 %, что позволяет повысить тугоплавкость и устойчивость к коррозии. Торий применяется в качестве легирующего компонента вольфрама. Благодаря этому повышается износостойкость материалов. В порошковой металлургии компоненты могут быть использованы для спекания и последующего применения. Для получения тяжёлых сплавов вольфрама применяются никель и железо или никель и медь. Содержание вольфрама в данных сплавах как правило не превышает 90 %. Смешивание легирующего материала с ним низкое даже при спекании.
Вольфрам и его сплавы по-прежнему используются там, где присутствуют высокие температуры, но нужна однако высокая твёрдость и где высокой плотностью можно пренебречь. Нити накаливания, состоящие из вольфрама, находят своё применение в быту и в приборостроении. Лампы более эффективно преобразуют электроэнергию в свет с повышением температуры. В вольфрамовой газодуговой сварке (англ.) оборудование используется постоянно, без плавления электрода. Высокая температура плавления вольфрама позволяет ему быть использованным при сварке без затрат. Высокая плотность и твёрдость позволяют вольфраму быть использованным в артиллерийских снарядах. Его высокая температура плавления применяется при строении ракетных сопел, примером может служить ракета «Поларис». Иногда он находит своё применение благодаря своей плотности. Например, он находит своё применение в производстве клюшек для гольфа. В таких деталях применение не ограничивается вольфрамом, так как более дорогой осмий тоже может быть использован.
Сплавы молибдена
Основная статья: МолибденМолибден.
Широкое применение находят сплавы молибдена. Наиболее часто используемый сплав — титан-цирконий-молибден — содержит в себе 0,5 % титана, 0,08 % циркония и остальное молибден. Сплав обладает повышенной прочностью при высоких температурах. Рабочая температура для сплава — 1060 °C. Высокое сопротивление сплава вольфрам-молибден (Mo 70 %, W 30 %) делает его идеальным материалом для отливки деталей из цинка, например, клапанов.
Молибден используется в ртутных герконовых реле, так как ртуть не формирует амальгамы с молибденом.
Молибден является самым часто используемым тугоплавким металлом. Наиболее важным является его использование в качестве усилителя сплавов стали. Применяется при изготовлении трубопроводов вместе с нержавеющей сталью. Высокая температура плавления молибдена, его сопротивляемость к износу и низкий коэффициент трения делают его очень полезным материалом для легирования. Его прекрасные показатели трения приводят его к использованию в качестве смазки где требуется надежность и производительность. Применяется при производстве ШРУСов в автомобилестроении. Большие месторождения молибдена находятся в Китае, США, Чили и Канаде.
Сплавы ниобия
Основная статья: НиобийНиобий.Тёмная часть сопла Apollo CSM сделана из сплава титан-ниобий.
Ниобий почти всегда находится вместе с танталом; ниобий был назван в честь Ниобы, дочери Тантала в греческой мифологии. Ниобий находит множество путей для применения, некоторые он разделяет с тугоплавкими металлами. Его уникальность заключается в том, что он может быть разработан путём отжига для того, чтобы достичь широкого спектра показателей твёрдости и упругости; его показатель плотности самый малый по сравнению с остальными металлами данной группы. Он может применяться в электролитических конденсаторах и является самым частым металлом в суперпроводниковых сплавах. Ниобий может применяться в газовых турбинах воздушного судна, в электронных лампах и ядерных реакторах.
Сплав ниобия C103, который состоит из 89 % ниобия, 10 % гафния и 1 % титана, находит своё применение при создании сопел в жидкостных ракетных двигателях, например таких как Apollo CSM (англ.). Применявшийся сплав не позволяет ниобию окисляться, так как реакция происходит при температуре от 400 °C.
Тантал
Основная статья: Тантал (элемент) Тантал.
Тантал является самым стойким к коррозии металлом из всех тугоплавких металлов.
Важное свойство тантала было выявлено благодаря его применению в медицине — он способен выдерживать кислую среду (организма). Иногда он используется в электролитических конденсаторах. Применяется в конденсаторах сотовых телефонов и компьютера.
Сплавы рения
Основная статья: Рений Рений.
Рений является самым последним открытым тугоплавким элементом из всей группы. Он находится в низких концентрациях в рудах других металлов данной группы — платины или меди. Может применяться в качестве легирующего компонента с другими металлами и придает сплавам хорошие характеристики — ковкость и увеличивает предел прочности. Сплавы с рением могут применяться в компонентах электронных приборов, гироскопах и ядерных реакторах. Самое главное применение находит в качестве катализатора. Может применяться при алкилировании, деалкилировании, гидрогенизации и окислении. Его столь редкое присутствие в природе делает его самым дорогим из всех тугоплавких металлов.
Общие свойства тугоплавких металлов
Тугоплавкие металлы и их сплавы привлекают внимание исследователей из-за их необычных свойств и будущих перспектив в применении.
Физические свойства тугоплавких металлов, таких как молибден, тантал и вольфрам, их показатели твёрдости и стабильность при высоких температурах делает их используемым материалом для горячей металлообработки материалов как в вакууме, так и без него. Многие детали основаны на их уникальных свойствах: например, вольфрамовые нити накаливания способны выдерживать температуры вплоть до 3073 K.
Однако, их сопротивляемость к окислению вплоть до 500 °C делает их одним из главных недостатков этой группы. Контакт с воздухом может существенно повлиять на их высокотемпературные характеристики. Именно поэтому их используют в материалах, в которых они изолированы от кислорода (например лампочка).
Сплавы тугоплавких металлов — молибдена, тантала и вольфрама — применяются в деталях космических ядерных технологий. Эти компоненты были специально созданы в качестве материала способного выдержать высокие температуры (от 1350 K до 1900 K). Как было указано выше, они не должны контактировать с кислородом.
> См. также
- Огнеупорные материалы
> Примечания
Для дополнительного чтения
Дендритная структура, возникшая в месте плавления карбида тантала-гафния
Omar Cedillos-Barraza et al. / Scientific Reports, 2016
Физики из Имперского колледжа Лондона, Института трансурановых элементов (Карлсруэ) и Университета Лондона уточнили температуры плавления карбидов гафния и тантала. С помощью лазерных методов плавки ученые показали, что наибольшей температурой плавления обладает чистый карбид гафния — HfC0,98 — материал плавится при 3959 ±84 градусах Цельсия. Ранее считалось, что самым тугоплавким материалом из известных является смешанный карбид гафния-тантала, содержащий примерно 20 процентов гафния. Исследование опубликовано в журнале Scientific Reports, кратко о нем сообщает пресс-релиз колледжа.
Исследования температуры плавления карбидов гафния и тантала датируются еще первой половиной XX века. Для этого использовался метод Пирани-Алтертума: с помощью электрического тока нагревалась пластинка материала с отверстием в центре. За пластинкой следили с помощью пирометра. В момент плавления отверстие оказывалось заполнено материалом и изменяло свое свечение. Разброс температур плавления, определенных этим методом для карбида гафния составил почти двести градусов, и по результатам измерений трудно было однозначно определить, какой из карбидов гафния и тантала является самым тугоплавким.
Образцы карбидов после плавления лазером. Слева-направо: кабрид тантала, карбид тантала-гафния, карбид гафния
Omar Cedillos-Barraza et al. / Scientific Reports, 2016
Поделиться
Авторы новой работы, отметив несовершенство ранних пирометров и методик, предложили использовать новый подход для определения температуры плавления. В ней образец керамики плавился под действием мощного 4,5-киловаттного лазера, после чего исследователи следили за его свечением. Момент плавления определялся по изменению отражения от поверхности. После этого лазер отключался, а температура плавления определялась по плато на графике остывания образца: в момент затвердевания отводимая от образца теплота не меняет его температуры.
Слева: кривая температурной зависимости карбида гафния (черная) и производная сигнала отраженного света. Справа: температурные кривые для карбида тантала, гафния и тантала-гафния.
Omar Cedillos-Barraza et al. / Scientific Reports, 2016
Поделиться
В результате оказалось, что наименьшей температурой плавления обладает карбид тантала — она соответствует 3768 ± 77 градусам Цельсия. Интересно, что в некоторых ранних работах карбид тантала наоборот считался более тугоплавким, чем карбид гафния. Высокими температурами плавления обладал состав Ta0.8Hf0.2C, ранее считавшийся рекордсменом — порядка 3905 ± 82 градусов Цельсия. Остальные смешанные карбиды плавились при более низких температурах. Абсолютным рекордсменом, по данным новой работы, стал карбид гафния HfC0,98, материал плавится при 3959 ±84 градусах Цельсия. Для сравнения, самым тугоплавким металлом является вольфрам, плавящийся при 3422 градусах Цельсия.
Считается, что карбидные керамики могут найти применение при строительстве гиперзвуковых самолетов. При движении в атмосфере на скорости свыше пяти чисел Маха теплозащита должна выдерживать температуры в 2200 кельвин и выше.
Ранее химики из Университета Брауна (Провиденс) теоретически предсказали существование фазы смешанного карбида-нитрида гафния с рекордно высокой температурой плавления — свыше 4400 кельвин. Ее состав отвечает формуле HfN0.38C0.51.
Владимир Королёв
Самая полная информация про огнеупорные материалы!
В связи с развитием металлургии и по мере распространения тепловых агрегатов различного назначения одной из важных отраслей промышленности во всех развитых странах стало производство огнеупорных материалов.
Огнеупорные материалы – изделия на основе минерального сырья, отличающиеся способностью сохранять свои свойства в условиях эксплуатации при высоких температурах, и которые служат в качестве конструкционных материалов и защитных покрытий.
Сырье для огнеупорных материалов — простые и сложные оксиды (например, SiO2, A12O3, MgO, ZrO2, MgO-SiO2), бескислородные соединения (например, графит, нитриды, карбиды, бориды, силициды), а также оксинитриды, оксикарбиды, сиалоны.
Для изготовления огнеупоров используют разнообразные технологии и процессы. Преобладающей является технология, включающая предварительную, тепловую обработку и измельчение компонентов, приготовление шихт с добавлением пластифицированных составляющих, формование из них изделий прессованием на механических и гидравлических прессах или экструзией с последующей допрессовкой или литьем, обжиг в туннельных, реже в периодических и газокамерных печах для получения заданных свойств материала.
Эксплуатационные свойства огнеупорных материалов определяются комплексом химических, физико-химических и механических свойств.
Основное свойство огнеупорных изделий — огнеупорность, т.е. способность изделия противостоять, не расплавляясь, действию высоких температур. Огнеупорность характеризуется температурой, при которой стандартный образец из материала в форме трехгранной усеченной пирамиды высотой 30 мм и сторонами оснований 8 и 2 мм (конус Зейгера) размягчается и деформируется так, что его вершина касается основания. Определенная таким образом температура обычно выше максимально допустимой температуры эксплуатации огнеупорных материалов.
Различают:
— собственно огнеупорные материалы (огнеупорность 1580-1770 °С);
— высокоогнеупорные (1770-2000 °С);
— материалы высшей огнеупорности (выше 2000 °С).
Огнеупоры могут быть общего назначения и для определения тепловых агрегатов и устройств, например, доменные, для сталеразливных ковшей и т.д., что указывается в нормативно-технической документации.
Формованные и неформованные огнеупорные материалы
Огнеупорные изделия могут быть формованными и неформованными.
Неформованные огнеупоры — огнеупоры, изготовленные без определенных форм и размеров в виде кусковых, порошковых и волокнистых материалов, а также паст и суспензий. Неформованные огнеупорные материалы обычно упрочняют введением минеральных (например, жидкое стекло) или органических (полимеры) связующих.
К ним относят металлургические заправочные порошки, заполнители и мелкозернистые компоненты для огнеупорных бетонов, огнеупорные цементы, бетонные смеси и готовые к применению массы, мертели, материалы для покрытий (в т.ч. торкрет-массы), некоторые виды волокнистых огнеупоров.
Неформованные огнеупоры могут быть сухими, полусухими, пластичными и жидкотекучими.
Неформованные огнеупоры применяют для выполнения и ремонта футеровок сталеразливочных ковшей (набивные и наливные кремнеземные, высокоглиноземные и магнезиальные массы); конвертеров (торкрет-массы), нагревательных и обжиговых печей (шамот, и высокоглиноземные массы), индукционных печей (корундовые и периклазовые массы), коксовых печей (обмазки), подин мартен, и электродуговых печей (заправочные порошки) и т. д.
Формование огнеупорных материалов проводят методами полусухого и горячего прессования, пластического формования, литья (вибролитья) из текучих масс или расплава материала, а также распилом предварительно изготовленных блоков или горных пород.
Формованные огнеупоры применяют для изготовления огнеупорных кладок стен, сводов, подов и других конструкций коксовых, мартеновских и доменных печей, печей для выплавки различных сплавов, при футеровке ядерных реакторов, МГД-генераторов, авиационных и ракетных двигателей; неформованные — для заполнения швов при кладке формованных огнеупоров, нанесения защитных покрытий на металлы и огнеупоры.
По характеру термической обработки различают безобжиговые и обожженные огнеупорные материалы.
Безобжиговые огнеупоры — изделия из огнеупорных материалов и связки, приобретают требуемые свойства при сушке < 400°С (после нагрева изделий от 400 до 1000°С их называют термообработанными). Связкой могут быть глины, керамические суспензии, растворы фосфатов, щелочные силикаты (жидкое стекло), смолы термопластичные и термореактивные, эластомеры и другие безобжиговые огнеупоры по прочности и пластичности не уступают, а по термостойкости превосходят обожженные огнеупоры.
Наиболее широко применяют следующие безобжиговые огнеупоры: кремнеземистые бетонные блоки (для нагревательных колодцев), шамот и высокоглиноземные (для обжиговых агрегатов), магнезиальноизвестковые на смоляной (пековой) связке (для сталеплавильных конвертеров) периклазовые и периклазохромитовые (для сталеразливочных стаканов), магнезиальные в стальных кассетах.
Для обожженных огнеупорных материалов температура обжига превышает 600 °С и определяется достижением необходимых физико-химических свойств материала. Обжиг огнеупорных материалов проводят в плазменных или электрических печах периодического или непрерывного действия — камерных, кольцевых, туннельных, шахтных и др.
Другие важные свойства огнеупорных материалов — пористость, термическая стойкость, теплопроводность, температура начала деформации под нагрузкой и химическая стойкость в различных средах.
По пористости (объемной доле пор в %) различают:
— особоплотные огнеупорные материалы (пористость менее 3%),
— высокоплотные (3-10%),
— уплотненные (16-20%),
— материалы повышенной пористости (20-30%),
— легковесные (45-75%) — огнеупоры с высокой (45-85%) пористостью. В зависимости от сырья изготовления, бывают шамотными, динасовыми, глиноземными и другими.
— ультралегковесные (75-90%), к которым обычно относят волокнистые огнеупорные материалы.
По химико-минеральному составу огнеупоры делят на типы (кремнеземистые, алюмосиликатные, глиноземистые, глиноземоизвестковые, магнезиальные, известковые, хромистые, цирконистые, оксидные, углеродистые, карбидкремниевые и бескислородные), на типы на группы. При композиционном составе в наименовании огнеупоров на первое место ставится преобладающий компонент (например, периклазохромитовые и хромитопериклазовые).
Алюмосиликатные огнеупорные материалы
Алюмосиликатные огнеупоры (alumina-silica refractories) — огнеупоры, изготовленные преимущественно из А12О3 и SiO2.
В зависимости от количества содержания А12О3 такие огнеупоры бывают:
— полукислые (содержание А12О3 — от 14 до 28%);
— шамотные (содержание А12О3 — от 28 до 45%);
— высокоглиноземистые (содержание А12О3 — от 45 до 95%).
Полукислые огнеупоры — алюмосиликатные огнеупоры с массовой долей А12О3 от 14 до 28 %.
Их свойства позволяют использовать такие огнеупоры только на малозначимых участках футеровки коксовых печах и в некоторых других сталелитейных агрегатах, но как противопожарная изоляция, этот вид огнеупоров имеет большие перспективы.
Шамотные огнеупорные материалы
Шамотные огнеупоры – содержат в совеем составе 28-45% А12О3 и 50-70 SiO2. Технология производства формованных шамотных огнеупоров включает: обжиг глины (каолина) при 1300-1500°С во вращающихся или шахтных печах, измельчение полученного шамота, смешивание со связующей глиной и водой (иногда с добавлением других связующих материалов), формование, сушку и обжиг при 1300-1400°С.
Шамотные огнеупоры применяют для футеровки доменных печей, сталеразливочных ковшей, нагревательных и обжиговых печей, котельных топок и др., а также для изготовления сифонных изделий для разливки стали. Неформованные шамотные огнеупоры изготовляют из измельченного шамота и связующих материалов и применяют в виде мертелей, набивных масс, порошков, заполнителей бетонов при выполнении и ремонте огнеупорных футеровок разных тепловых агрегатов.
Отличительной особенностью высокоглиноземистых огнеупорных изделий является повышенное содержание Al2O3, которое превышает 45%. Огнеупорность высокоглиноземистых изделий составляет порядка 1750 °С и выше. В сумме с высокой температурой начала размягчения и повышенной химической стойкостью против кислых и щелочных расплавов позволяет использовать их в основных тепловых агрегатах металлургической промышленности.
Наиболее распространенными агрегатами для применения высокоглиноземистых огнеупорных изделий являются: верхняя часть стен и купола воздухонагревателей, кладке лещади и горна в доменных печах, при непрерывной разливке стали; в печах с рабочей температурой 1400°C—1500 °С, сталеразливочные ковши при обработке стали вакуумированием, как заполнители огнеупорных бетонов, мертелей и т.п.
Эти огнеупорные изделия бывают трех видов:
— Муллитокремнеземистые (А12О3 — 45-62%), МКР, имеют шамотную основу из глин и бокситов; характеризуются содержанием Аl2О3 до 62%. Они производятся методом плавки в электрической печи оксидов алюминия и кремния.
— Муллитовые (А12О3 -62-72%);
— Муллитокорундовые (А12О3 — 72-90%) МК, так же, как и МЛ, имеют основу из глиноземов, маложелезистых бокситов и электрокорундов.
Высокоглиноземистые корундовые огнеупоры. К ним относятся огнеупоры, содержание А12О3 в которых >95%. Для изготовления такого огнеупора используют порошок электроплавкого корунда и технический глинозем. После формировки его обжигают при температуре 1600 °C – 1750 °C. Огнестойкость получаемого материала позволяет использовать его в процессах с температурой 1750 °C – 1800 °C, корундовый огнеупор способен устойчиво контактировать с жидким металлом и шлаками, кислотами, щелочами и расплавленным стеклом.
Из корундовых огнеупоров изготовляют корундовые плиты для шиберных затворов сталеразливочных ковшей, изделия для футеровки камер вакууматоров стали, насадки высокотемпературных воздухонагревателей, чехлы термопар, тигли для плавки стекол, металлов и др.
Неформовованные корундовые огнеупоры — мертели и бетоны с корундовым заполнителем применяют для футеровки патрубков вакууматоров стали, а массы и обмазки — для изгототовления и ремонта огнеупорных футеровок с рабочей температурой > 1700°С.
Волокнистые огнеупоры (fibrous refractories) — теплоизоляционные, состоящие из волокон огнеупоры в виде формованных (плиты, блоки, листы и др.) с неорганической или органической связкой и неформованных (вата, войлок и др.) изделий. Волокнистые огнеупоры изготовляют преимущественно из высоко-глиноземного и глиноземного стекловолокна и из корундового, поликристалличического волокна, а также из ZrO2 и др. оксидов.
Волокнистые огнеупоры применяют для теплоизоляции и футеровки тепловых агрегатов, а также для заполнения компенсационных швов.
Динасовые огнеупоры — содержат > 93% SiO2 или 80-93% SiO2 (при изготовлении с добавками) и изготовливаются из кварцитов. В порошок кварцита добавляют известковое молоко и железистые добавки, формуют на прессах изделия задан, размеров и обжигают при 1430-1460°С.
Динасовые огнеупоры применяют для футеровки коксовых, стекловар, печей, воздухонагревателей, а также ряда плавильных агрегатов в ЦМ и др. Неформованные динасовые огнеупоры — мертели, материалы для обмазок и т.п. изготавливают из молотых боя динас, огнеупоров и кварцитов, применяют при выполнении и ремонте кладки.
1. Известковопериклазовые (доломитовые) – огнеупорные изделия, изготовленные из доломита, в т.ч. с добавлением периклазового порошка с массовой долей MgO — 10-50% и СаО — 45-85%. Известковопериклазовые огнеупорные изделия устойчивы при взаимодействии с основными шлаками.
Используют неформовованные известковопериклазовые огнеупоры (массы из обожженного доломита со связкой) для набивки блочных и монолитных футеровок электросталеплавильных печей, конвертеров, сталеразливочных ковшей и др.
2. Безобжиговые известковопериклазовые – огнеупорные изделия, изготовленные на основе SiC (> 70%). Безобжиговые известковопериклазовые огнеупорные изделия изготавливают формованием порошков обожженного доломита на органической связке (каменноугольная смола, пекбез или с термической обработкой при 300-600°С); огнеупорность их > 2000°С. Изготовляют также известковопериклазовые изделия, обожженные при 1500-1750°С и сохранившие частично свободные СаО.
3.Карбидкремниевые – огнеупорные изделия с количеством SiC > 70%. Карбидкремниевые огнеупоры применяют для изготовления муфелей, рекуператоров, чехлов термопар и др.; футеровки электрических нагревательных колодцев, агрегатов производства цинка и алюминия, циклонов трубопроводов и т.п.
Карбидкремниевые огнеупоры на нитридной и оксинитридной связке используют также для футеровки нижней части шахты домен, печей. Неформованные карбидкремниевые огнеупорные изделия применяют для покрытий щитовых экранов котельных топок, в виде мертелей и масс при выполнении огнеупорной кладки.
Магнезиальные огнеупорные материалы
Магнезиальные огнеупоры (magnesia refractories) – огнеупорные изделия, содержащие в основе MgO. Их изготовляют из смеси обожженных и сырых материалов, которые после добавки связки проходят термообработку при температуре 1500-1900°.
Такие огнеупоры обладают высокой огнестойкостью, что позволяет применять их в процессах, связанных с расплавом металла и шлаками, а также при футеровке агрегатов металлургии. Магнезиальные огнеупорные изделия имеют высокую стойкость при взаимодействии с расплавами металлов и основных шлаков.
Магнезиальные огнеупорные изделия бывают трех видов:
Магнезиальносиликатные огнеупоры — их основу составляет форстерит Mg2SiO4, к которому добавлены 50-60% MgO, 25-40% SiO2 и связующая добавка. Магнезиальносиликатные огнеупоры формуют со связующей добавкой и обжигают при 1450-1550°С (или используют без обжига).
Основные свойства магнезиальносиликатных огнеупоров: пористость открытая 22-28%, температуpa начала размягчения под нагрузкой — до 1610-1620°С.
Магнезиальносиликатные огнеупоры применяют для футеровки насадок регенераторов мартенов, и стекловарных печей, сталеразливочных ковшей (в т.ч. в виде набивных масс), плавильных агрегатов ЦМ, а также для изготовления сталеразливочных стаканов и др. Неформованные магнезиальносиликатные огнеупоры могут применяться как добавка в металлургических порошках.
Магнезиальношпинелидные огнеупоры имеют в своем составе периклиз и хромшпинелид MgO. Обжигаемые при температуре 1700-1850°С, периклазохромитовые огнеупоры имеют в своем составе более 60% MgO, и от 5 до 20% Cr2O3. Для получения нужных характеристик огнеупора необходим чистый, более 96%, MgO, а также концентраты хромита.
К магнезиальношпинелидным огнеупорам (также относят: хромитопериклазовые, изготовляемые из смеси периклазового порошка с хромитовой рудой и содержащие 40-60% MgO и 15-35% Сг2О3; периклазошпинельные (> 40% MgO и 5-55% А12О3), шпинельные, состоящие в основном из шпинели состава MgO o А1203 и хромитовые огнеупоры (> 30 % Сг2О3 и < 40% MgO).
Такие огнеупоры используют в самых ответственных местах металлургических агрегатов: в сталелитейных печах при футеровке сводов, в горловинах и летках кислородных конвертеров, в сталелитейных ковшах, в высокотемпературных печах.
Стоимость магнезиальношпинелидных огнеупоров более низкая, чем магнезиальношпинелидных периклазохромитовых, поэтому первые применяются на менее ответственных участках металлургических агрегатов.
Магнезитоизвестковые — изготовляются из прошедшего обжиг доломита или из составов, в которые входят окислы магния и кальция. Такие огнеупоры служат для футеровки конвертеров.
Другие огнеупорные материалы
Периклазовые огнеупоры (periclase (mag-nesite) refractories) — магнезиальные огнеупоры, содержащие > 85% MgO. Их изготовляют из периклазового порошка с добавлением клеящей связки обжигом при 1600-1900°С; для безобжиговыех периклазовых огнеупоров используют связки из лигносульфонатового сульфата магния и др.
Периклазовые огнеупорные изделия применяют для футеровки стенок мартеновских печей, миксеров, печей для плавки меди и никеля, высокотемпературных нагревательных печей, леток кислородных конвертеров и др., а также в виде плит шиберных затворов сталеразливочных ковшей, стаканов для разливки сталей, пористых фурм для продувки стали газами и т.п. Неформованные периклазовые огнеупоры используют для изготовления мертеля, металлургических (заправочных) порошков, набивных масс для вакууматоров стали, индукционных печей и др.
Периклазоуглеродистые огнеупоры — огнеупоры, изготовленные из периклазового порошка с добавлением 6-25% природного или искусственного графита и органической связки (например, фенольной порошкообразной с этиленгли-колем или бакелита).производятся из спеченного и плавленного периклаза с добавлением 6-25% графита (натурального или искусственного) и органической связки (например, фенольной с этиленгликолем или бакелита).
Периклазоуглеродистые огнеупоры используются в промышленности для футеровки агрегатов, подающих газ в конвертерах со смешанной продувкой, а также участков стен мощных электродуговых печей. Широко применяются периклазоуглеродные огнеупоры и в производстве шиберных затворов, а также шлакового пояса электродуговых печей и сталеразливочных ковшей.
Алюмопериклазовые огнеупоры сочетают в себе качества углеродсодержащих и высокоглиноземистых огнеупоров. Хорошая термостойкость последних (более высокая, чем у огнеупоров основного состава) повышена введением углеродного компонента.
Алюмопериклазовые огнеупоры изготавливаются с использованием корунда, плавленого или спеченного периклаза, алюмомагнезиальной шпинели, высококачественных спеченных бокситов и крупночешуйчатого графита с различными функциональными добавками. Содержание Al2O3 в них превышает 73%.
Данный вид огнеупорных изделий предлагается как альтернатива к периклазоуглеродистым и высокоглиноземистым огнеупорам, в случае если их стойкость не удовлетворяет техническим условиям. Они используются при футеровке сталеразливочных ковшей и кислородных конвертеров.
Периклазохромитовые изделия содержат > 60% MgO и 5-20% Сг2О3. Периклазохромитовые огнеупоры формуют и обжигают при 1700-1850°С. Для высококачественных периклазохромитовых огнеупорных изделий используют MgO чистотой > 96% и концентраты хромита.
Данный вид огнеупоров характеризуется высокой термостойкостью и стойкостью к фаялитовому шлаку. Они производятся из спеченного и плавленного периклаза с добавлением хромитовой руды. Содержание магнезита колеблется от 65 до 83%, хромита – от 17 до 35%.
Хромитопериклазовые огнеупоры используются в цветной металлургии для кладки высокотемпературных печей, в печахвзвешенной плавки и обеднения шлаков, для футеровки отражательных печей, конвертеров. Хромитопериклазовые огнеупорные материалы применяются также в средней части насадок регенераторов, работающих при температурах 700—1100°С.
Смоломагнезитовые огнеупоры (tar-magnesite refractories) — формованные на прессах изделия из порошка обожженного доломита (крупность зерен до 6-8 мм), смешанного при нагревании до 100-120°С с 4-6% каменноугольной смолы или пека. Смолодоломитовые огнеупорные изделия имеют кажущуюся плотность 2800-2900 кг/м3, предел прочности при сжатии 2000-4000 МПа, устойчивы против основных шлаков. При добавке в массу магнезитового порошка изделие называются смолодоломитомагнезитовыми.
Основная область применения смолодоломитового огнеупора — футеровка кислородных конвертеров.
Оксидные огнеупоры (oxide refractories) – огнеупорные изделия, содержащие > 97% высокоогнеупорных оксидов (BeO, MgO, CaO, A12O3, Cr2O3, ZrO2, ThO2 и др.) или их соединений и твердых растворов. Формованные оксидные огнеупоры изготовляют преимущественно из тонкозернистых порошков прессов, или литьем из суспензий с последующим обжигом, а неформованные оксидные огнеупоры — измельчением оксидов, обычно после предварительного обжига и введения необходимых добавок.
Выпуск оксидных огнеупорных материалов не ограничивается только неформованным материалом, состоящим на более чем 97% из высокоогнеупорных оксидов BeO, A12O3, CaO,Cr2O3 и других компонентов.
Этот огнеупор производится и в виде изделий, которые формируются из порошков или суспензий под давлением. Такие огнеупоры в виде технической керамики применяются в качестве корпусов для измерительных приборов, контролирующих температурный, кислородный и другие режимы литейного процесса, а также для тиглей, вкладышей на разливе стали и в других областях.
В металлургии оксидные огнеупоры применяют в виде изделий из технической керамики для аппаратуры при измерении высоких температур, датчиков контроля масс, доли кислорода в стали, тиглей для лабораторных плавильных печей, вкладышей в разлив, устройствах и др.
Углеродосодержащие огнеупоры (carbon refractories) — огнеупоры, состоящие преимущественно из свободного углерода или содержащие углерод в качестве основного компонента.
Углеродосодержащие огнеупоры отличаются высокой теплопроводностью, низким ТКЛР, хорошей стойкостью при взаимодействии с расплавами металлов и шлаками.
К этому виду огнеупорных изделий относятся:
— угольные, а также графитированные блоки, которые производятся из смеси кокса, термоантрацита, в качестве связующего применяются каменноугольная смола, битум, антрацитовое масло. Температура обжига таких блоков — 1100-1450°С.
— графитированные изделия, выпускаемые из нефтяного кокса. Такие огнеупоры имеют графитовую структуру и низкое содержание золы. Температура обжига таких изделий — более 2000°С.
— пирографит, который получают в результате распада углеродосодержащего газа на поверхности с высокой температурой.
Углеродистые огнеупоры применяют для футеровки нижнего строения домен, печей, электротермических печей, агрегатов для плавки свинца, меди и др., а также для изготовления погружных стаканов, стопоров-моноблоков, вкладышей для изложниц, тиглей для плавки цветных металлов и др.
Неформованные углеродистые огнеупоры из коксрвых порошков на каменноугольной смоле применяют для заполнения швов кладки, углеродсодержащие — для футеровки желобов домен, печей и др.
Цирконистые огнеупоры (zircon/zirconia refractories) – огнеупорные изделия, на основе бодделеита ZrO2 (67,1 % ZrO2) и циркона (ZrSiO4).
Цирконистые огнеупоры отличаются высокой огнеупорностью (до 2600°С), хорошей стойкостью при взаимодействии с расплавами металлов и шлаков, высокой прочностью при 2200-2400°С и высокой термостойкостью.
Высокоплотную керамику из ZrO2 применяют в виде чехлов термопар, фильтров для сплавов, а также нагревательных элементов при температуpax до 2200°С в печах с резистивным и индукционным нагревом. Зернистые огнеупоры из ZrO2 используют в устройствах для разливки стали, для футеровки агрегатов с > 1800°С, тиглей для плавки ряда металлов и сплавов. Стаканы из циркона (в т.ч. с графитом) с добавлением пластифицированного компонента используют в промежуточных ковшах при разливке стали.
Цирконистые огнеупоры в зависимости от содержания ZrO2 подразделяют на:
— оксидциркониевые (> 85 % ZrO2),
— бадде-леитокорундовые (20-85 % ZrO2 и до 65 % А12О3),
— цирконовые (> 50 % ZrO2 и > 25 % Si2O,),
— оксидцирконийсодержащие (< 20 % ZrO2).
Бескислородные огнеупоры (non-oxygenous refractories) – огнеупорные изделия, изготовленные из тугоплавких бескислородных соединений: карбидов, нитридов, боридов, силицидов, сульфидов. Технология бескислородных огнеупоров включает приготовление порошков бескислородных соединений, формование из них изделий с добавлением связки и последующий обжиг при высоких температуpax. В окислительной среде такие материалы имеют очень ограниченное применение.
Большой выбор огнеупорных изделий по выгодным ценам представлен в каталоге продукции на нашем сайте OGNEYPOR.RU.
Продажа огнеупорных материалов – это стабильная, многолетняя деятельность нашей компании, поэтому нам хорошо известны все запросы и требования наших покупателей.
Мы рады видеть Вас в числе наших заказчиков.
Огнеупорные материалы – это продукция, изготовленная с использованием минерального сырья. Они характеризуются стабильной структурой при воздействиях пламени, химических реакций и длительной эксплуатации. Их используют на промышленных объектах, где технологические процессы предполагают использование значительных температур, в жилых домах, где применяют тепловые аппараты. Благодаря высоким техническим и эксплуатационным характеристикам, огнеупорные материалы используются на тех объектах, где высоки требования к надежности и долговечности.
Технические и эксплуатационные характеристики
Главное свойство таких материалов – огнеупорность, которое выражает температуру, при которой начинается процесс деформации. Относительно этого значения рассматривается эффективность их использования в тех или иных целях. Кроме этого параметра рассматриваются и другие. А именно – как ведет себя огнеупор под воздействием сильного нагревания:
- изменение формы и нарушение целостности изделия под нагрузкой при повышенных температурах;
- параметры усилия на сжатие при нагревании, они отражают устойчивость структуры;
- нейтральность к химическим воздействиям.
На заметку! Огнестойкие материалы выдерживают значительные температуры, минимальные значения — +1580 градусов С, максимальные – 3 тысячи градусов С. Продукты, способные сохранять свойства при наибольших температурных параметров, называются сверхогнеупорные.
Огнеупорный картон МКРКЛ
Классификация
Продукция, стойкая к огню выпускается в различных формах: в плитах, листами, рулонами и есть группа неформатированных материалов. Кроме этого ее подразделяют на виды и по другим признакам:
По размерам и форме:
- клиновые и прямые малых, нормальных и больших размеров;
- фасонные простые, крупноблочные, сложные, весом более 60 килограммов;
- лабораторного или промышленного назначения.
По способу производства:
- производство огнеупорных материалов посредством распилки горных пород из заготовок;
- литые, выполненные по технологии жидкого литья;
- изготовление из пластичных масс с последующей допрессовкой;
- форматирование прессованием из порошков;
- изготовленные горячим прессованием;
- изготовленные посредством термопластического прессования;
- форматированные из горячего расплава.
По температурам деформации:
- от 1580 градусов С до 1770 градусов С – обычные огнеупорные;
- до 2 тысяч градусов С – высоко огнеупорные;
- до 3 тысяч градусов С – материалы с высшей огнеупорностью;
- более 3 тысяч градусов С – сверхогнеупорные.
По степени пористости:
- поры открыты, их объем не превышает 3% — особо плотные;
- поры открыты до 10% — высоко плотные;
- поры открыты, объем до 16% — плотные;
- поры открыты, до 20% — уплотненные;
- поры открыты, до 30% — средне плотные;
- общая пористость до 45% — низко плотные;
- общая пористость до 75% — высоко пористые;
- общая пористость более 75% — ультапористые.
Разновидности по составу:
- бескислородные;
- кремнеземнистые;
- карбидкремниевые;
- алюмосиликатные;
- оксидоуглеродистые;
- стекломагнезитовые;
- глиноземнистые;
- углеродистые;
- магнезиальные;
- оксидные;
- магнезиально-известковые;
- цирконистые;
- известковые;
- хромистые;
- магнезиально-силикатные.
Базальтовый огнеупорный изолятор
Сфера применения
Наиболее востребованы огнеупорные листовые материалы. Их назначение определяется размерами и набором свойств конкретной продукции. Преимущественно изделия предназначены для футеровки печных конструкций, котельных, каминов, дымоходных коробов, термоизоляции колонок и котлов отопления, в банях и саунах. Такие защитные экраны разрешают существенно увеличивать ресурс сооружений и оборудования в целом, и отдельных их элементов. Порошковая и формовочная продукция широко используется в приборостроении, для защиты устройств от температур и регуляции режима эксплуатации в соответствии с техническими условиями. Из неформованного сырья производят специальную одежду, например снаряжение для рабочих литейного цеха.
Негорючий огнеупор на основе оксида магния
Производство ОЛМ
Производство огнеупорных материалов начинается с подготовки сырья. Часто рабочие вручную выбирают из него загрязнения и примеси. Далее сырье размельчают и просеивают. Затем порошок и добавки смешивают в строго определенных дозировках. Смесь форматируют, сушат в естественных или специальных условиях, обжигают.
Следует понимать! ОЛМ изготавливаются из природного и искусственного сырья. Подбираются максимально совместимые химические и минеральные вещества. Структура, плотность, пористость и прочность нужных параметров формируется с помощью конкретной технологии.
Шамотный жаропрочный кирпич
Огнестойкая продукция различается по видам сырья:
- Органические компоненты. Такие продукты производятся из минерального сырья, они способны выдерживать значительные температуры. Но не все виды. Например, пенополистиролы характеризует невысокий показатель стойкости к нагреву и огню, но из них можно сложить печь или камин с невысоким нагревом.
- Неорганические компоненты. Это самая большая группа продукции, диапазон огнеупорности которых велик. В категорию входят минеральные и базальтовые плиты, стекловолокно, ячеистые бетоны, вермикулиты, сотопласты, перлиты. Стоимость таких изделий не высока – от 300 рублей за 1 м2.
- Композитные составы. К этой группе можно отнести продукты на основе асбеста: асбестоизвестковые и асбестоцементные материалы. Сюда же относят вспененные кремнеземные продукты и некоторые другие.
ОЛМ для стен
ОЛМ применяют при строительстве зданий и сооружений. Такая продукция представлена в широко ассортименте. Максимально востребован бетон, он доступен, удобен в использовании и безопасен для здоровья человека. Огнестойкий листовой материал часто используется для обшивки стен и потолков помещений. Такая отделка существенно увеличивает пожарную безопасность, и используется на объектах с высокими требованиями по ППБ. Разновидностей много, самые популярные типы:
- Картоны и плиты на основе стекловолокна и асбеста. Это наиболее экономически выгодное решение, материалы выдерживают воздействие открытого пламени в течение получаса, и нагревание до +700 градусов С.
- Вермикулит. Термостойкость плит достигает +900 градусов С, они химически нейтральные, стойки к воздействию влаги, не вступают в реакции с органическими растворителями.
- Минеральные плиты. Они высоко востребованы из-за оптимального сочетания эксплуатационных и противопожарных качеств. Основой в них служит белый цемент.
- Магнезит. Листы стойки к агрессивным средам и сильным нагреваниям.
- Рулоны из базальтового волокна. На поверхность наносится алюминиевое теплоотражающее покрытие. Выдерживают температуры до +900 градусов С. Полотно легкое и гибкое, оптимально для установки на конструкции сложных геометрий.
- Терракотовая плитка и керамогранит. Воздухо- и влагопроницаемые плитки с хорошими теплоизоляционными свойствами. Они просты в эксплуатации и уходе, загрязнения снимаются обычными моющими средствами. Сохраняют структуру и характеристики в течение десятков лет и многократных циклов нагрева. Являются одновременно и огнеупорами, и отделочными материалами.
Есть ОЛМ, которые не следует использовать в помещениях, где находятся люди, например базальтовые плиты с добавлением формальдегидных смол. При достижении показателей в +300 градусов С они начинают выделять ядовитые вещества и токсины.
Огнеупорный высокопрочный кирпич
ОЛМ для бани
В саунах и банях устанавливают защитные огнеупорные экраны для печей. Теплоизоляционные конструкции изготавливаются из различных огнеупоров. В продаже они представлены более двумя десятками композитов и керамик. Они стойки не только к высоким температурам, но и к агрессивным газовым средам. Материалы изначально разрабатывались для использования в критических промышленных условиях, а затем адаптировали к бытовым особенностям. Согласно ТУ и ГОСТ они классифицируются по следующим позициям:
- Кремнеземные. Они производятся из минералов с высокой чистотой и кварца. Их содержание в материалах достигает 95%. Продукты на основе кварца способны выдерживать температуры до 2 тысяч градусов С и агрессивные воздействия.
- Огнеупоры на основе оксида алюминия, спеченные в блоки. Основа может составлять до 90% от общего объема состава. К этой категории относятся шамотные и муллитовые кирпичи. Это оптимальное решение для каминов и печей, работающих на природном топливе.
- Магнезиальные. Продукция изготавливается из оксидов различных металлов посредством спекания при высоких температурах. Она стойка к агрессивным средам и температурам до 2 тысяч градусов С.
- Миниритовые плиты. Они производятся из экологически безопасного сырья, имеют высокие жаропрочные характеристики. До 90% состава – это цементы, армируемые волокнистыми материалами. При нагревании они несколько увеличиваются в размерах, поэтому при монтаже следует оставлять небольшие зазоры между листами.
Важно! Официально металл не является огнеупорным изолятором, но его часто используют в этом качестве для защиты конструкций здания от тепла и пламя печей и каминов. Сталь имеет наиболее высокие параметры коэффициента отражения тепла, ей не страшны резкие и значительные температурные перепады.
Муллитовый термостойкий кирпич
Резюмируем
Огнеупорные листы – высоко востребованная продукция на производстве и в быту. Но их не нужно оценивать, только как пожарную защиту. Продукцию наделяют дополнительными свойствами, что разрешает использовать ее в различных сферах. Делая такой выбор, нужно понимать, что важна совокупность характеристик, в противном случае покупка экономически нецелесообразна.
Видео:
Оклейка печи стеклообоями
Сегодня стеклообои применяются во многих отраслях в качестве прочного, износостойкого, а также эстетического отделочного материала. Функциональные возможности данных обоев позволяют их применить в качестве декоративной отделки практически любой поверхности. Их применяют в оклейке поверхностей офисных и жилых помещений, в отделке потолка, а также разных печей. Особый интерес представляют стеклообои для отделки печи, которые характеризуются пожаробезопасностью и экологичностью, так как в случаях нагрева они практически не выделяют никаких токсических веществ.
В производстве стеклообоев применяются только натуральные материалы. Они изготавливаются из специального стеклянного волокна, которое под давлением и воздействием высокой температуры (1000-1200 С) приобретает форму пряжи разной толщины. Готовые материалы применяют для изготовления паутинки. Последняя имеет форму паутины и «армирует» стеклообоев. Стеклообои для печей являются преимущественными потому, что они не нуждаются в лишней обработке и очень хорошо пропускают тепло. Также стеклообои можно покрасить моющими красками, красками на водной основе. Если к этим характеристикам прибавить высокую прочность и термостойкость, то получаем отделочный материал, который не имеет аналогов по своим свойствам.
Отделка печи стеклообоями представляет собой целенаправленный и поэтапный процесс, при котором стеклообои правильно наклеиваются на поверхность печей. Многие боятся, что при оклейке печи стеклообями, последние лопнут или не пропустят достаточного тепла. Однако, на практике доказывается, что они гарантированно могут быть использованы в отделке печи. Они также используются наряду с другими отделочными материалами.
Работа по оклейке печи стеклообоями
Работа по оклейке печи стеклообоями начинается с грунтовки поверхности. Для грунтовки применяют разные виды штукатурки. Особенностью подготовки грунтового слоя является то, что она должна быть гладкая и ровная. На поверхности не должно быть трещин, их необходимо заштукатурить. Это важно, так как неровная поверхность или широкие трещины могут стать причиной расклеивания обоев спустя некоторое время. Для грунтовки применяется раствор глубокого проникновения.
После этого следует приступать к выбору соответствующего размера обоев и линейного раскраивания канцелярскими ножницами. Нужно приготовить обои в соответствующей форме, чтобы их можно было поклеить самому. Дело в том, что при нанесении клея обои пропитываются быстро и при неаккуратном обращении могут деформироваться или рваться.
Следующим этапом отделки печи стеклообоями заключается в нанесении клея на поверхность печи. Для этого необходим валик небольшого размера. Клей наносится только на те поверхности, где кусок обоев будет оклеен. Если нанести на большие поверхности, то клей высохнет до того, как вы успеете поклеить первое полотно и приступить ко второму. Разглаживание обоев во время поклейки осуществляется с помощью валика, желательно сухого, не использованного для нанесения клей.
Процесс оклейки стеклобоев на печь
Теперь необходимо приступить к ответственному этапу работы по отделки печи стеклообоями, который включает в себе сам процесс оклейки обоев. При этом обычно не делают нахлестов, а орнаменты нужно стыковать правильно. Это делается с помощью небольших припусков, которые необходимо отрезать ножом. Для оклейки нужен специальный стеклообоечный клей, например «Oscar». Он обеспечивает прочность, обои не отклеятся в течение долгого времени. Работа по оклейке обоев на поверхность заканчивается нанесением слоя клея, чтобы сверху можно было нанести краску.
После оклейки печи стеклообоями нужно подождать минимум 1 день, чтобы обои полностью высохли, а на следующий день можно приступить к окраске. Выбор вида и цвета краски зависит только от ваших предпочтений. Для нанесения на поверхность стеклообоев применяются акриловые, водо-дисперсионные, латексные и другие виды краски.
Стеклообои для печей являются преимущественными по разным параметрам, которые характеризуются свойствами самого материала. Главным достоинством можно считать стойкость к высокой температуре. Стеклообои на печь являются единственным видом обоев, который можно оклеить на печи и другие отопительные сооружения. Правда, печи можно декорировать разными материалами, такими как камень, плитками, кафелем и разными другими. Но, по сравнению с ними отделку стеклообоями можно считать более экономичным вариантом с минимальными затратами.
>Рельефные стеклообои, как клеить их на печку правильно
Что такое стеклообои и для чего они подходят
Стеклообои это нетканый материал, имеющий повышенный уровень жаростойкости. Как правило, на них имеется орнамент из незамысловатых геометрических фигур в определённом чередовании или рельефный ковровый рисунок. Он может быть цветочным, или воспроизводящим сложное очертание декора готического стиля.
Несмотря на такой широкий спектр рисунков, отличаются стеклообои тем, что они однотонные.
Они прекрасно подходят для оклейки стен помещений с повышенной влажностью и перепадами температур, но прекрасно смотрятся и в гостиных и спальнях. Для отделки помещений, где находится печь или камин это идеальный материал для стен. Желая выполнить интерьер комнаты с печью в едином цвете и стиле, можно также использовать эти чудо-обои, оклеив саму печь ими же.
Как оклеить комнату стеклообоями
Стеклообои материал тяжёлый, и для их наклейки требуется специальный клей. Большое количество клея, нанесенного на сами обои, может привести к их повреждению. Несмотря на все их характеристики, они способны рваться, как и любые другие. Самым идеальным способом приклеить их это нанести слой клея непосредственно на стену, а после размещения листа, пригладить его валиком посередине сверху вниз и в стороны от середины.
Это избавит от образования воздушных подушек и заломов материала.
Жаростойкие стеклообои, как клеить на печку, если ранее на ней была побелка, такой вопрос требует обстоятельного ответа.
Подготовка печи
1. Слой побелки необходимо удалить, не из-за особенностей самих обоев, а по причине того, что любой клей, пропитывая побелку, утяжеляет её, делает более плотной. Из-за чего теряется связь между ней и покрытой ею поверхностью. Приклеивание к побелке любого материала приведёт к неудаче.
2. Заделка щелей и микротрещин печной смесью.
3. Выравнивание поверхности печи.
Перед оклейкой обоями, все слои предварительной подготовки должны высохнуть окончательно.
Как раскроить стеклообои
При варианте, что вся печь будет оклеена обоями одного типа, необходимо следить за направлением рисунка. Резать этот материал можно обычными канцелярскими ножницами. Исходя из перепадов ширины печи, необходимо при раскрое материала несколько раз проверить соответствие размера каждого куска.
Никаких припусков на стыки не требуется, потому что этот вид обоев при высыхании не даёт усадки.
Клей наносится непосредственно на печь из расчёта только на один приклеиваемый фрагмент. Это продиктовано тем, что клей для стеклообоев высыхает очень стремительно, благодаря такому его свойству обои приклеиваются быстро и надёжно.
Наклеив первый лист, и раскроив следующий, можно опять приступать к нанесению клея. Первые несколько минут, обои способны скользить, что даёт возможность создать идеальный стык.
Для создания более красочного рисунка из стеклообоев придётся раскрой материала производить из нескольких рулонов.