Мощность асинхронного двигателя

Содержание

ПРАКТИЧЕСКАЯ РАБОТА №4

по дисциплине

Электромеханические системы

РАСЧЁТ ХАРАКТЕРИСТИК АСИНХРОННОГО ДВИГАТЕЛЯ

Вариант 13

Выполнил: ст. гр. УИТ – 53

Колотилин И.С.

Приняла:

Мефёдова Ю. А.

Задача 1. Трехфазный асинхронный двигатель с короткозамкнутым рото­ром типа АИР 180 М2, используемый в качестве электропривода насосного агрегата консольного типа марки ВК 10/45, предназ­наченного для перекачивания воды для технических нужд, него­рючих и нетоксичных жидкостей, имеет следующие номиналь­ные данные: мощность на валу Р2н=30 кВт; скольжение Sн=0,025 (2,5%); синхронная частота вращения n1н=3000 об/мин; коэффициент полезного действия ηн= 0,905 (90,5%); коэффициент мощности обмотки статора cos φн=0,88. Известны также: отношение пускового момента к номинальному Мп /Мн=1,7; отношение пускового тока к номинальному Iп/Iн=7,5; отношение максимального (критического) вращающего момента к номинальному Мmax/Mн=2,7. Питание двигателя осуществляется от промышленной сети пе­ременного тока 380/220 В, 50 Гц. Требуется определить:

  1. номинальную частоту вращения ротора двигателя;

  2. вращающий номинальный, критический и пусковой момен­ты двигателя;

  3. мощность, потребляемую двигателем из сети Р1н;

  4. номинальный и пусковой токи;

5)пусковой ток и вращающие моменты, если напряжение в сети снизилось по отношению к номинальному на 5, 10 и 15% (Uc = 0,95∙Uн; Uc = =0,9∙Uн; Uc = 0,85∙Uн).

РЕШЕНИЕ.

1. Номинальная частота вращения:

n2н = n1н∙(1 – Sн) = 3000∙(1 — 0,025) = 2925 об/мин.

2. Номинальный вращающий момент на валу:

Мн=9,55∙

3. Пусковой вращающий момент двигателя:

Мп = 1,7∙Мн = 1,7∙97,95 = 166,5 Н∙м.

4. Максимальный вращающий момент:

Мmах = 2,7∙Мн = 2,7∙97,95 = 264,5 Н∙м.

5. Номинальную мощность Р1н, потребляемую двигателем из сети, определим из выражения:

ηн=Р2н/Р1н Р1н= Р2н/ ηн = 30/0,905 = 33,15 кВт;

при этом номинальный ток, потребляемый двигателем из сети, может быть определен из соотношения:

Р1н=

а пусковой ток при этом будет:

In = 7,5∙I1н = 7,5∙57 = 427,5 А.

6. Определяем вращающий момент при снижении напряжения в сети:

− на 5%. При этом на двигатель будет подано 95% UH, или U = 0,95∙Uн. Так как известно, что вращающий момент на валу двигателя пропорционален квадрату напряжения М ≡U2, то он составит (0,95)2 = 0,9 от номинального. Следовательно, пусковой вращающий момент будет:

М5% = 0,90∙Мп = 0,9∙166,5 = 149,9 Н∙м;

− на 10%. При этом U =0,9∙Uн;

M10% = 0,81∙Мп = 0,81∙166,5 = 134,9 Н∙м;

− на 15%. В данном случае U=0,85∙Uн;

М15% = 0,72∙166,5 = 119,9 Н∙м.

Отметим, что работа на сниженном на 15% напряжении сети допускается, например, у башенных кранов только для завершения рабочих операций и приведения рабочих органов в безопас­ное положение.

7. Находим, как влияет аналогичное снижение напряжения на пусковой ток двигателя Iп:

− на 5%. Учитывая, что пусковой ток можно приближенно считать пропорциональным первой степени напряжения сети, получим:

Iп5% ≈0,95∙Iп = 0,95∙427,5 = 406,1 А;

− на 10%:

Iп10% ≈0,9∙Iп = 0,9∙427,5 = 384,8 А;

− на 15% :

Iп15% ≈0,85∙Iп = 0,85∙427,5 = 363,4 А.

Задача 2. Трёхфазный асинхронный двигатель с короткозамкнутым рото­ром типа АИР 13256 имеет следующие номиналь­ные данные: мощность на валу Р2н=5,5 кВт; скольжение Sн=0,04 (4%); синхронная частота вращения n1н=1000 об/мин; коэффициент полезного действия ηн = 0,85 (85%); коэффициент мощности обмотки статора cos φн = 0,8. Известны также: отношение пускового момента к номинальному Мп /Мн=2; отношение пускового тока к номинальному Iп/Iн=7; отношение максимального (критического) вращающего момента к номинальному Мmax/Mн=2,2. Питание двигателя осуществляется от промышленной сети пе­ременного тока 380/220 В, 50 Гц.

Определить мощность, потребляемую двигателем из промыш­ленной сети переменного тока 220/380В, 50Гц, ток в цепи стато­ра при включении в сеть 220/380В и 220/127В, номинальные вращающий момент на валу двигателя.

РЕШЕНИЕ.

1. Мощность, потребляемая трёхфазным двигателем из сети при номинальном режиме работы:

Р1н = Р2н/ηн = 5,5/0,85 = 6,47 кВт.

2. Ток, потребляемый обмоткой статора из сети при соединении обмотки:

− звездой:

− треугольником:

3. Номинальный вращающий момент на валу двигателя.

Сначала найдём номинальную частоту вращения:

n2н = n1н∙(1 – Sн) = 1000∙(1 — 0,04) = 960 об/мин.

4. Находим число пар полюсов р обмотки статора, имея в виду, что частота промышленной сети f= 50 Гц:

Задача 3. Для привода промышленной вентиляционной установки используется трехфазный асинхронный двигатель с короткозамкнутым ротором типоразмера АИР 13256. Используя его технические данные, приведенные в задаче 2, построить для него механичес­кую характеристику в виде зависимости n2=f(М).

РЕШЕНИЕ.

  1. Из выражения:

где n2н — частота вращения ротора двигателя при номинальной нагрузке;

n1 — синхронная частота вращения магнитного поля статора (в этом случае n1 = 1000 об/мин);

Sн — скольжение при номинальной нагрузке (SH=0,04)

Оп­ределяется величина частоты вращения ротора двигателя в номи­нальном режиме:

n2н = 1000∙(1 — 0,04) = 960 об/мин.

2. По значениям Sн и , находим критическое скольжение:

3. Находим номинальный Мном и максимальный (критичес­кий) Мmах моменты:

4. Для построения механической характеристики воспользу­емся формулами:

,

где S — текущее значение скольжения.

Задаваясь значениями S от 1 до 0, с требуемым шагом (напри­мер так, как показано в таблице 3) вычисляем величины n и М, им соответствующие. Результаты заносим в эту таблицу и по ним строим механическую характеристику n2=f(М).

На ней отметим (*)А, соответствующую номинальному режи­му работы.

Таблица 1 — Результаты расчета механической характеристики электродвигателя

Принцип работы электродвигателя

1. Согласно закону Ампера на проводник с током I в магнитном поле будет действовать сила F. 2. Если проводник с током I согнуть в рамку и поместить в магнитное поле, то две стороны рамки, находящиеся под прямым углом к магнитному полю, будут испытывать противоположно направленные силы F3. Силы, действующие на рамку, создают крутящий момент или момент силы, вращающий ее. 4. Производимые электродвигатели имеют несколько витков на якоре, чтобы обеспечить больший постоянный момент.5. Магнитное поле может создаваться как магнитами, так и электромагнитами. Электромагнит обычно представляет из себя провод намотанный на сердечник. Таким образом, по закону электромагнитной индукции ток протекающий в рамки будет индуцировать ток в обмотки электромагнита, который в свою очередь будет создавать магнитное поле.

    Подробное описание принципа работы электродвигателей разных типов:

  • Принцип работы однофазного асинхронного электродвигателя
  • Принцип работы трехфазного асинхронного электродвигателя
  • Принцип работы синхронного электродвигателя

Классификация электродвигателей

Вращающийся электродвигатель
Само коммутируемый Внешне коммутируемый
С механической коммутацией (коллекторный) С электронной коммутацией1 (вентильный2, 3) Асинхронный электродвигатель Синхронный электродвигатель
Переменного тока Постоянного тока Переменного тока4 Переменного тока
  • Универсальный
  • Репульсионный
  • КДПТ с обмоткой возбуждения
      Включение обмотки

    • Независимое
    • Последовательное возбуждения
    • Параллельное
    • Комбинированное
  • КДПТ с постоянными магнитами
  • БДПТ
    (Бесколлекторный двигатель + ЭП |+ ДПР)
  • ВРД
    (Реактивный двигатель с ротором с явновыраженными полюсами и сосредоточенной обмоткой статора + ЭП |+ ДПР)
  • Трехфазный
    (многофазный)
    • АДКР
    • АДФР
  • Двухфазный
    (конденсаторный)
  • Однофазный
    • с пусковой обмоткой
    • с экранированными полюсами
    • с асимметричным магнитопроводом
  • СДОВ
  • СДПМ
    • СДПМВ
    • СДПМП
    • Гибридный
  • СРД
  • Гистерезисный
  • Индукторный
  • Гибридный СРД-ПМ
  • Реактивно-гистерезисный
  • Шаговый5
Простая электроника Выпрямители,
транзисторы
Более сложная
электроника
Сложная электроника (ЧП)

Примечание:

  1. Указанная категория не представляет отдельный класс электродвигателей, так как устройства, входящие в рассматриваемую категорию (БДПТ, ВРД), являются комбинацией бесколлекторного двигателя, электрического преобразователя (инвертора) и, в некоторых случаях, — датчика положения ротора. В данных устройствах электрический преобразователь, в виду его невысокой сложности и небольших габаритов, обычно интегрирован в электродвигатель.
  2. Вентильный двигатель может быть определен как электрический двигатель, имеющий датчик положения ротора, управляющий полупроводниковым преобразователем, осуществляющим согласованную коммутацию обмотки якоря .
  3. Вентильный электродвигатель постоянного тока — электродвигатель постоянного тока, вентильное коммутирующее устройство которого представляет собой инвертор, управляемый либо по положению ротора, либо по фазе напряжения на обмотки якоря, либо по положению магнитного поля .
  4. Электродвигатели используемые в БДПТ и ВРД являются двигателями переменного тока, при этом за счет наличия в данных устройствах электрического преобразователя они подключаются к сети постоянного тока.
  5. Шаговый двигатель не является отдельным классом двигателя. Конструктивно он представляет из себя СДПМ, СРД или гибридный СРД-ПМ.

Аббревиатура:

  • КДПТ — коллекторный двигатель постоянного тока
  • БДПТ — бесколлекторный двигатель постоянного тока
  • ЭП — электрический преобразователь
  • ДПР — датчик положения ротора
  • ВРД — вентильный реактивный двигатель
  • АДКР — асинхронный двигатель с короткозамкнутым ротором
  • АДФР — асинхронный двигатель с фазным ротором
  • СДОВ — синхронный двигатель с обмоткой возбуждения
  • СДПМ — синхронный двигатель с постоянными магнитами
  • СДПМП — синхронный двигатель c поверхностной установкой постоянных магнитов
  • СДПМВ — синхронный двигатель со встроенными постоянными магнитами
  • СРД — синхронный реактивный двигатель
  • ПМ — постоянные магниты
  • ЧП — частотный преобразователь

Типы электродвигателей

Коллекторные электродвигатели

Коллекторная машина — вращающаяся электрическая машина, у которой хотя бы одна из обмоток, участвующих в основном процессе преобразования энергии, соединена с коллектором . В коллекторном двигателе щеточно-коллекторный узел выполняет функцию датчика положения ротора и переключателя тока в обмотках.

Универсальный электродвигатель

Может работать на переменном и постоянном токе. Широко используется в ручном электроинструменте и в некоторых бытовых приборах (в пылесосах, стиральных машинах и др.). В США и Европе использовался как тяговый электродвигатель. Получил большое распространение благодаря небольшим размерам, относительно низкой цены и легкости управления.

Коллекторный электродвигатель постоянного тока

Электрическая машина, преобразующая электрическую энергию постоянного тока в механическую. Преимуществами электродвигателя постоянного тока являются: высокий пусковой момент, быстродействие, возможность плавного управления частотой вращения, простота устройства и управления. Недостатком двигателя является необходимость обслуживания коллекторно-щеточных узлов и ограниченный срок службы из-за износа коллектора.

Бесколлекторные электродвигатели

У бесколлекторных электродвигателей могут быть контактные кольца с щетками, таким образом не надо путать бесколлекторные и бесщеточные электродвигатели.

Бесщеточная машина — вращающаяся электрическая машина, в которой все электрические связи обмоток, участвующих в основном процессе преобразования энергии, осуществляются без скользящих электрических контактов .

Асинхронный электродвигатель

Наиболее распространенный электродвигатель в промышленности. Достоинствами электродвигателя являются: простота конструкции, надежность, низкая себестоимость, высокий срок службы, высокий пусковой момент и перегрузочная способность. Недостатком асинхронного электродвигателя является сложность регулирования частоты вращения.

Cинхронный электродвигатель

Синхронные двигатели обычно используются в задачах, где требуется точное управление скоростью вращения, либо где требуется максимальное значение таких параметров как мощность/объем, КПД и др.

Основные параметры электродвигателя

Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) — векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.

,

  • где M – вращающий момент, Нм,
  • F – сила, Н,
  • r – радиус-вектор, м

Справка: Номинальный вращающий момент Мном, Нм, определяют по формуле

,

  • где Pном – номинальная мощность двигателя, Вт,
  • nном — номинальная частота вращения, мин-1

Начальный пусковой момент — момент электродвигателя при пуске.

Справка: В английской системе мер сила измеряется в унция-сила (oz, ozf, ounce-force) или фунт-сила (lb, lbf, pound-force)

1 oz = 1/16 lb = 0,2780139 N (Н)
1 lb = 4,448222 N (Н)

момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)

1 oz∙in = 0,007062 Nm (Нм)
1 lb∙in = 0,112985 Nm (Нм)

Мощность электродвигателя — это полезная механическая мощность на валу электродвигателя.

  • Мощность электродвигателя постоянного тока

Механическая мощность

Мощность — физическая величина, показывающая какую работу механизм совершает в единицу времени.

,

  • где P – мощность, Вт,
  • A – работа, Дж,
  • t — время, с

Работа — скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы .

,

  • где s – расстояние, м

Для вращательного движения

,

  • где – угол, рад,

,

  • где – углавая скорость, рад/с,

Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя

Справка: Номинальное значение — значение параметра электротехнического изделия (устройства), указанное изготовителем, при котором оно должно работать, являющееся исходным для отсчета отклонений.

Коэффициент полезного действия электродвигателя

Коэффициент полезного действия (КПД) электродвигателя — характеристика эффективности машины в отношении преобразования электрической энергии в механическую.

,

  • где – коэффициент полезного действия электродвигателя,
  • P1 — подведенная мощность (электрическая), Вт,
  • P2 — полезная мощность (механическая), Вт
    При этом потери в электродвигатели обусловлены:

  • электрическими потерями — в виде тепла в результате нагрева проводников с током;
  • магнитными потерями — потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
  • механическими потерями — потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
  • дополнительными потерями — потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.

КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.

Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.

Частота вращения

  • где n — частота вращения электродвигателя, об/мин

Момент инерции ротора

Момент инерции — скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси

,

  • где J – момент инерции, кг∙м2,
  • m — масса, кг

Справка: В английской системе мер момент инерции измеряется в унция-сила-дюйм (oz∙in∙s2)

1 oz∙in∙s2 = 0,007062 kg∙m2 (кг∙м2)

Момент инерции связан с моментом силы следующим соотношением

,

  • где – угловое ускорение, с-2

,

Справка: Определение момента инерции вращающейся части электродвигателя описано в ГОСТ 11828-86

Номинальное напряжение

Номинальное напряжение (англ. rated voltage) — напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики .

Электрическая постоянная времени

Электрическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.

,

  • где – постоянная времени, с

Механическая характеристика

Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.

Сравнение характеристик внешне коммутируемых электрических двигателей

Ниже представлены сравнительные характеристики внешне коммутируемых электродвигателей, в ракурсе применения в качестве тяговых электродвигателей в транспортных средствах.

  • Сравнение механических характеристик электродвигателей разных типов при ограниченном токе статора
  • Зависимость мощности от скорости вращения вала для двигателей разных типов при ограниченном токе статора
Параметр АДКР СДПМП СДПМВ СРД-ПМ СДОВ
Постоянство мощности во всем диапазоне скоростей
Момент к току статора
Эффективность (КПД) во всем рабочем диапазоне
Вес

Примечание: Оранжевый цвет — низкий показатель, желтый цвет — средний показатель, светло-желтый цвет — высокий показатель. Аббревиатура:

  • СРД-ПМ — синхронный реактивный двигатель с постоянными магнитами (синхронный гибридный двигатель)
  • СДОВ — синхронный двигатель с обмоткой возбуждения

В соответствии с выше приведенными показателями гибридный синхронный электродвигатель, а именно синхронный реактивный электродвигатель со встроенными постоянными магнитами, является наиболее подходящим для применения в качестве тягового электродвигателя в автомобилестроении (выбор проводился для концепта автомобилей BMW i3 & BMW i8). Использование реактивного момента обеспечивает высокую мощность в верхнем диапазоне скоростей. Более того такой двигатель обеспечивает очень высокую эффективность (КПД) в широком рабочем диапазоне .

Области применения электродвигателей

Электродвигатели являются крупнейшими потребителями электроэнергии в мире, на них приходится около 45% от всей потребляемой электроэнергии .

    Электродвигатели используются повсеместно, основные области применения:

  • промышленность: насосы, вентиляторы, компрессоры, конвейеры, движущая сила для других машин и др.
  • строительство: насосы, вентиляторы, конвейеры, лифты, системы отопления, вентиляции и кондиционирование воздуха и др.
  • потребительские устройства: холодильники, кондиционеры, персональные компьютеры и ноутбуки (жесткие диски, вентиляторы), пылесосы, стиральные машинки, миксеры и др.
ЭД1 Функции Области применения
Вращающиеся электродвигатели Насосы Системы водоснабжения и водоотведения
Системы перекачки охлажденной или нагретой воды, системы отопления, ОВК2, системы полива
Системы канализации
Перекачка нефтепродуктов
Вентиляторы Приточно-вытяжная вентиляция, ОВК2, вентиляторы
Компрессоры Системы вентиляции, холодильные и морозильные установки, ОВК2
Накопление и распределение сжатого воздуха, пневматические системы
Системы сжижения газа, системы перекачки природного газа
Вращение, смешивание, движение Прокатный стан, станки: обработка металла, камня, пластика
Прессовое оборудование: обработка алюминия, пластиков
Обработка текстиля: ткачество, стирка, сушка
Смешивание, взбалтывание: еда, краски, пластики
Транспорт Пассажирские лифты, эскалаторы, конвейеры
Грузовые лифты, подъемные краны, подъемники, конвейеры, лебедки
Транспортные средства: поезда, трамваи, троллейбусы, автомобили, электромобили, автобусы, мотоциклы, велосипеды, зубчатая железная дорога, канатная дорога
Угловые перемещения
(шаговые двигатели, серводвигатели)
Вентили (открыть/закрыть)
Серво (установка положения)
Линейные электродвигатели Открыть/закрыть Вентили
Сортировка Производство
Хватать и перемещать Роботы

Примечание:

  1. ЭД — электродвигатель
  2. ОВК — системы отопления, вентиляции и кондиционирование воздуха

Производители электродвигателей

  • Российские производители электродвигателей
  • Производители электродвигателей ближнего зарубежья
  • Производители электродвигателей дальнего зарубежья

Российские производители электродвигателей

Регион Производитель Асинхронный двигатель Синхронный двигатель УД КДПТ
АДКР АДФР СДОВ СДПМ, серво СРД, СГД Шаговый КДПТ ОВ КДПТ ПМ
Краснодарский край Армавирский электротехнический завод
Свердловская область Баранчинский электромеханический завод
Владимир Владимирский электромоторный завод
Санкт-Петербург ВНИТИ ЭМ
Москва ЗВИ
Московский электромеханический завод имени Владимира Ильича
Пермь ИОЛЛА
Республика Марий Эл Красногорский завод «Электродвигатель»
Воронеж МЭЛ
Новочеркасск Новочеркасский электровозостроительный завод
Санкт-Петербург НПО «Электрические машины»
Томская область НПО Сибэлектромотор
Новосибирск НПО Элсиб
Удмуртская республика Сарапульский электрогенераторный завод
Киров Электромашиностроительный завод Лепсе
Санкт-Петербург Ленинградский электромашиностроительный завод
Псков Псковский электромашиностроительный завод
Ярославль Ярославский электромашиностроительный завод

Аббревиатура:

Производители электродвигателей ближнего зарубежья

Страна Производитель Асинхронный двигатель Синхронный двигатель УД КДПТ
АДКР АДФР СДОВ СДПМ, серво СРД, СГД Шаговый КДПТ ОВ КДПТ ПМ
Беларусь Могилевский завод «Электродвигатель»
Беларусь Полесьеэлектромаш
Украина Харьковский электротехнический завод «Укрэлектромаш»
Молдова Электромаш
Украина Электромашина
Украина Электромотор
Украина Электротяжмаш

Производители электродвигателей дальнего зарубежья

Страна Производитель Асинхронный двигатель Синхронный двигатель УД КДПТ
АДКР АДФР СДОВ СДПМ, серво СРД, СГД Шаговый КДПТ ОВ КДПТ ПМ
Швейцария ABB Limited
США Allied Motion Technologies Inc.
США Ametek Inc.
США Anaheim automation
США Arc System Inc.
Германия Baumueller
Словения Domel
США Emerson Electric Corporation
США General Electric
США Johnson Electric Holdings Limited
Германия Liebherr
Швейцария Maxon motor
Япония Nidec Corporation
Германия Nord
США Regal Beloit Corporation
Германия Rexroth Bosch Group
Германия Siemens AG
Бразилия WEG

Электродвигатель — это электрическая машина, в которой электрическая энергия преобразуется в механическую. Существует несколько типов электродвигателей: синхронные, асинхронные и двигатели постоянного тока.

Синхронные двигатели

Синхронные двигатели имеют большую мощность (50-100кВт и более), по сравнению с другими двигателями, применяются на металлургических заводах, в шахтах и других предприятиях, служат для приведения в движения насосов, компрессоров, вентиляторов, двигательно-генераторных установок и др.

Особенностью синхронных электродвигателей определяющей их функциональные возможности и области применения, является постоянство средней частоты вращения при неизменной частоте, амплитуде напряжения питания и колебания момента нагрузки. Следовательно, при снижении напряжения синхронный двигатель сохраняет большую перегрузочную способность, а возможность форсировки возбуждения увеличивает надежность работы при аварийных понижениях напряжения. Большой воздушный зазор и применение постоянных магнитов делает КПД синхронных двигателей выше.

Синхронный двигатель состоит из неподвижного статора и вращающегося ротора. В пазах статора размещена обмотка переменного тока, получающая питание от сети, а в роторе – обмотка постоянного тока. Электродвигатели вращают, ротор синхронно с магнитным полем питающего напряжения. Расположенная на роторе обмотка возбуждения получает питание от источника постоянного тока через контактные кольца. В основном применяются на приводах большой мощности. Мощность такого электродвигателя достигает несколько десятков мегаватт.

Имея столько достоинств, синхронные двигатели имеют ограничение в применении — сложностью конструкций, наличием возбудителя, высокой ценой и сложностью пуска.

Асинхронные двигатели

Асинхронные двигатели подразделяются на двигатели с короткозамкнутым и фазным ротором. Электродвигатели мощностью больше 0,5 кВт обычно выполняются трехфазными, а при меньшей мощности однофазными.

Асинхронные электродвигатели применяются в станкостроении, сельском хозяйстве, деревообрабатывающей и металлообрабатывающей промышленности, строительной технике и др. Такие электродвигатели давно известны отечественному рынку. Эти электродвигатели имеют не высокую стоимость, неприхотливы в обслуживании и просты в конструкции.

При выборе асинхронного электродвигателя необходимо учитывать два фактора: КПД преобразования энергии и тип исполнения агрегата. Существует множество аналогов электродвигателей марки АИР (АИР марка электродвигателей, которая не привязана к определенному заводу), например новые современные электродвигателе 5АИ. В работе этого оборудования используются менее шумные подшипники, повышенная степень защиты: исполнение IP55, резьбовое отверстие в торце вала и др.

Принцип действия двигателя основан на взаимодействии вращающегося магнитного поля, возникающего при прохождении трехфазного переменного тока по обмоткам статора, в результате чего возникают механические усилия, заставляющие ротор вращаться в сторону вращения магнитного поля, при условии, что частота вращения ротора меньше частоты вращения поля. Асинхронные электродвигатели потребляют реактивную мощность из сети. Предел применения асинхронных электродвигателей с короткозамкнутым ротором определяется мощностью системы электроснабжения конкретного предприятия, так как большие пусковые токи при малой мощности системы создают большие понижения напряжения.

Двигатели постоянного тока

Принцип работы основан на электромагнитном преобразовании энергии. Широко применяются в промышленности, транспортных и других установках, где требуется плавное регулирование скорости вращения (прокатные станы, мощные металлорежущие станки, электрическая тяга на транспорте и т. д.).

Различаются двигатели с параллельным, независимым, последовательным и смешанным возбуждением.

  • Двигатели постоянного тока с независимым или параллельным возбуждением, подключенные к сети с постоянным напряжением, может работать как в генераторном, так и в двигательном режиме и переходить из одного режима работы в другой. Двигатели с параллельным возбуждением имеют параллельное подключение обмотки возбуждения с обмоткой якоря к сети. Если в двигателе обмотка якоря и обмотка возбуждения подключены к источникам питания с различными напряжениями, то его называют двигателем с независимым возбуждением. Такие двигатели применяют в электрических приводах, у которых питание обмотки якоря осуществляется от генератора или полупроводникового преобразователя.
  • Двигатели с последовательным возбуждением широко применяются в различных электрических приводах, особенно там, где имеется изменение нагрузочного момента в широких пределах и тяжелые условия пуска (грузоподъемные и поворотные механизмы, тяговый привод и пр.).
  • Двигатель со смешанным возбуждением, благодаря магнитному потоку создает совместное действие двух обмоток возбуждения – параллельной и последовательной.

Что такое электродвигатель

Электрический двигатель (электродвигатель) является устройством для преобразования электрической энергии в механическую и приведения в движение машин и механизмов. Электродвигатель – главный и обязательный (но не единственный) элемент электропривода.

Первые электродвигатели были изобретены еще в первой ХІХ ст., а с конца того же столетия стали получать все большее распространение. Современные промышленность, транспорт, коммунальное хозяйство, быт уже невозможно представить без электрических двигателей.

Преобладающее большинство электрических двигателей являются двигателями вращательного движения (рис. 1). Они состоят из неподвижной части (статора) и подвижной (ротора). Ротор начинает вращаться после подачи питания к обмоткам двигателя. Однако для ряда механизмов, выполняющих поступательное или возвратно-поступательное движение (суппорты и столы металлорежущих станков, некоторые транспортные средства), с целью упрощения конструкции механической части электропривода иногда используют линейные двигатели. Подвижная часть таких двигателей (вторичный элемент или бегун) осуществляет линейное перемещение (рис. 2).

В зависимости от рода электрического тока, применяемого для питания электродвигателей, различают двигатели постоянного и переменного тока.

Рис. 1 Электродвигатели вращательного движения

Рис. 2 Линейный электродвигатель: 1 – статор, 2 – подвод питания, 3 – бегун

Принцип действия любого электродвигателя основывается на взаимодействии магнитных полей. Если приблизить один магнит к другому, то разноименные их полюса будут притягиваться друг к другу, а одноименные – отталкиваться. В двигателе роль по крайней мере одного из магнитов играет катушка с током (то есть электромагнит). Известно, протекание по проводнику электрического тока вызывает появления магнитного поля вокруг проводника (рис. 3). Это поле имеет коаксиальный характер, а направление его магнитных силовых линий можно определить с помощью «правила буравчика». В соответствии с этим правилом, если буравчик закручивать в проводник таким образом, чтобы направление поступательного движения буравчика совпадало с направлением тока в проводнике, то направление вращения буравчика покажет направление магнитных силовых линий поля (стрелки на рис. 3).

Рис. 3 Возникновение магнитного поля проводника с током

На рис. 4 показан поперечный разрез проводника. Внутри разреза условно показано направление тока: крест («хвост» стрелки тока) – ток от зрителя (рис. 4а), точка («острие» стрелки тока) – ток на зрителя (рис. 4б). Из рис. 4в, г видно, что магнитное поле замкнутой рамки (кольца) с током подобно магнитному полю постоянного магнита (силовые линии выходят из северного полюса и входят в южный). Таким образом, рамка с током представляет собой элементарный электромагнит.

Рис. 4 Магнитные силовые линии проводников с током: а – ток от зрителя, б – ток на зрителя, в – рамка с током, г – силовые линии рамки (кольца) с током

Электрические двигатели переменного тока

К двигателям переменного тока относятся синхронные, шаговые (разновидность синхронных) и асинхронные двигатели. Их объединяет то, что по их обмоткам обмотками протекают знакопеременные токи, а питаются они от источников знакопеременного напряжения.

Статор электродвигателей переменного тока представляет из себя сердечник (магнитопровод) из листов специальной электротехнической стали, в котором сделаны отверстия (пазы) для размещения обмотки (фрагмент магнитопровода статора показан на рис. 5). Обмотка состоит из отдельных секций (катушек, рамок). Внутри статора на подшипниках помещен ротор, способный свободно вращаться вокруг своей оси.

Рис. 5 Магнитопровод статора двигателя переменного тока

На рис. 6 схематично показан поперечный разрез статора и ротора. На противоположных сторонах статора в двух пазах размещены проводники элементарной катушки обмотки. Эта катушка выглядит так, как на рис. 4в и к ней можно подати напряжение от постороннего источника с той или другой полярностью (как на рис. 4в). На роторе располагается постоянный магнит (полюса Nr и Sr). Если к обмотке статора подать постоянный ток такого направления, как показано на рис. 6а, возникает магнитное поле статора с полюсами Ns и Ss. Ротор поворачивается по часовой стрелке, чтобы совместить противоположные полюса полей ротора и статора (окончательное положение ротора показано штриховой линией). Если полярность тока статора противоположна (рис. 6б), полюса статора поменяются местами, а ротор будет поворачиваться в противоположном направлении.

Рис. 6 Взаимодействие магнитных полей статора и ротора

Чтобы обеспечить непрерывное вращение ротора, на статоре размещают несколько отдельных обмоток, питаемых от отдельных источников. На рис. 7 показан поперечный разрез двигателя с тремя обмотками статора (красная А, синяя В, зеленая С). Подобный двигатель называется трехфазным, а его обмотки – фазными. Обмотки представляют собой элементарные рамки из проводника (как на рис. 4в), сдвинутые в пространстве на 120 градусов друг относительно друга. На рис. 7 ток протекает только по обмоткам со значками точки и крестика.

Рис. 7 Принцип действия синхронного двигателя

Если подать ток к обмотке А так, как показано на рис. 7а, магнитная ось поля статора займет горизонтальное положение, а южный полюс поля ротора после его поворота совместится с северным полюсом поля статора. Протекание тока по обмотке С приведет к повороту магнитной оси статора (а за ним – ротора) на 60 по часовой стрелке (рис. 7б). Затем ток подается в обмотку В (рис. 7в). После этого ток протекает по обмоткам А, С, В, но в противоположном направлении (сравните рис. 7а и 7г, 7б и 7д, 7в и 7е). С каждым переключение обмоток магнитная ось статора, а за нею – и ротор будут поворачиваться на следующие 60 градусов. Если после очередного переключения тока в обмотках продлить протекание тока в последней обмотке, ротор останется неподвижным. Именно таким есть принцип действия шагового двигателя. Такие двигатели используют для дозированного поворота вала механизма на заданный угол (например, в электромеханических часах и принтерах). Изменить направление вращения ротора можно, изменив порядок подключения обмоток к положительному полюсу источника (А-С-В вместо А-В-С).

Подавая попеременно ток в фазные обмотки (рис. 8), можно обеспечить непрерывное вращение ротора. Обратите внимание, что токи ІA, ІB, ІC фазных обмоток сдвинуты во времени друг по отношению к другу на треть периода Т. Изменяя период переключения тока в обмотках, можно регулировать скорость вращения ротора. Для изменения движущего момента электродвигателя изменяют величину тока обмоток статора или индукцию магнитного поля ротора (если на роторе вместо постоянных магнитов установлена обмотка возбуждения, т.е., электромагнит).

Рис. 8 Изменение во времени токов обмоток статора шагового двигателя

В трехфазном шаговом двигателе магнитное поле статора может занимать в пространстве только 6 положений (см. рис. 7), а перемещается оно между ними скачками. Вследствие этого возникают пульсации движущего момента электродвигателя, а обеспечить плавное вращение очень трудно. Если токи фазных обмоток изменять не ступенчато (как на рис. 8), а по закону синуса со сдвигом в треть периода (рис. 9), поле статора будет вращаться плавно (т.н. вращающееся магнитное поле). Ротор со временем догонит поле статора и далее будет вращаться синхронно с ним. Именно в таком режиме работают синхронные двигатели.

Рис. 9 Фазные токи синхронного двигателя

У асинхронного двигателя такой же статор, как и у синхронного, а по обмоткам статора также протекают синусоидальные токи (как на рис. 9). Однако конструкция ротора своеобразна (рис. 10). Ротор набран из листов электротехнической стали (как и статор). В пазах ротора уложены стержни (алюминиевые или медные), которые на торцах ротора замкнуты с помощью колец. Если ротор вращается со скоростью, меньшей скорости поля статора, в обмотке ротора полем статора наводится электродвижущая сила, которая приводит к протеканию по обмотке ротора токов. Токи вызывают появление магнитного поля ротора, а взаимодействие двух полей – создание движущего момента, который поворачивает ротор. Поскольку движущий момент возникает только тогда, когда скорости ротора та поля статора неодинаковы, ротор не может двигаться синхронно з полем статора (отсюда и название двигателя: асинхронный, т.е. «несинхронный»). Благодаря простоте конструкции, дешевизне и надежности асинхронные двигатели получили наибольшее распространение.

Конструкция асинхронного электродвигателя показана на рис. 11, 12.

Рис. 10 Ротор асинхронного двигателя: а – короткозамкнутая обмотка, б – поперечный разрез ротора

Рис. 11 Асинхронный двигатель (разрезано)

Рис. 12 Асинхронный двигатель в разобранном виде

Двигатель постоянного тока

Двигатель постоянного тока, в отличие от двигателей переменного тока, питается от источника постоянного тока. Магнитное поле статора создается неподвижными постоянными магнитами, а на роторе (иначе — якоре) расположена обмотка. Якорь жестко соединен с валом и может вращаться вокруг свои оси. Таким образом, конструктивно двигатель постоянного тока является обратной синхронной машиной.

Принцип действия двигателя постоянного тока поясняет рис. 13. Поле статора создают постоянные магниты или электромагниты (обмотки возбуждения). На ферромагнитном сердечнике якоря помещена обмотка, состоящая из двух последовательно включенных частей (их соединяет показанный пунктиром проводник). На якоре также размещены изолированные друг от друга коллекторные пластины, к которым присоединены концы обмотки якоря. К коллекторным пластинам через неподвижные графитные щетки от источника питания подается постоянный ток. Если верхнюю щетку подключить к положительному полюсу источника питания, а нижнюю – к отрицательному, по обмотке якоря будет протекать ток І, показанный на рис. 13. По правилу буравчика левый полюс якоря станет северным, правый – южным. Полюса якоря и статора будут отталкиваться друг от друга, вызывая поворот якоря по часовой стрелке. Якорь, поворачиваясь, по инерции «проскакивает» положение «северный по-люс против южного», и под щетками оказывается другие коллекторные пластины. Направление тока в обмотке якоря меняется на противоположное, полюса якоря меняются местами, и вращение якоря продолжается. Для изменения направления вращения якоря следует изменить полярность напряжения, поданного к щеткам.

Конструкцию, подобную показанной на рис. 13, имеют маломощные двигатели (используемые, например, в детских игрушках). В промышленных двигателях для обеспечения плавности движения якорь имеет много отдельных секций обмотки, соединенных с отдельными парами коллекторных пластин (подобно рис. 14). При вращении якоря через пару щеток к источнику подключается каждый раз следующая секция якоря, которая в данном положении якоря имеет наибольшую магнитную связь с полем статора.

Рис. 13 К принципу действия двигателя постоянного тока

Рис. 14 Якорь двигателя постоянного тока

В электроприводе обычно возникает задача автоматического управления электрическими двигателями. В простейших случаях достаточно только обеспечить их запуск, остановку, изменение направления вращения и защиту от аварийных режимов. Подобные функции легко реализуются с помощью простых и относительно дешевых электромеханических контакторов и реле. Однако нередко есть необходимость в плавном регулировании скорости вращения и движущего момента. Тогда для питания двигателей используют управляемые источники питания – полупроводниковые преобразователи энергии (управляемые выпрямители для двигателей постоянного тока и преобразователи частоты для двигателей переменного тока) и довольно сложные системы автоматического регулирования. Электроприводы, в состав которых, кроме двигателя, входят управляемые преобразователи энергии и системы автоматического управления, способны выполнять производственную задачу с минимальным участием человека. Они получили название автоматизированных электроприводов.

Видео о конструкции асинхронных двигателей и двигателей постоянного тока
Официальный канал кафедры Электропривода НГУ в YouTube

Скачать эту статью в формате pdf (1,65МБ)

Механические и электрические характеристики асинхронных электродвигателей

В данной статье осветим тему механических и электрических характеристик электродвигателей. На примере асинхронного двигателя рассмотрим такие параметры как мощность, работа, КПД, косинус фи, вращающий момент, угловая скорость, линейная скорость и частота. Все эти характеристики оказываются важными при проектировании оборудования, в котором электродвигатели служат в качестве приводных. Сегодня особенно широко распространены в промышленности именно асинхронные электродвигатели, поэтому на их характеристиках и остановимся. Для примера рассмотрим АИР80В2У3.

Номинальная механическая мощность асинхронного электродвигателя

На шильдике (на паспортной табличке) электродвигателя указывается всегда номинальная механическая мощность на валу данного двигателя. Это не та электрическая мощность, которую данный электродвигатель потребляет из сети.

Так, например, для двигателя АИР80В2У3, номинал в 2200 ватт соответствует именно механической мощности на валу. То есть в оптимальном рабочем режиме данный двигатель способен выполнять механическую работу 2200 джоулей каждую секунду. Обозначим эту мощность как P1 = 2200 Вт.

Номинальная активная электрическая мощность асинхронного электродвигателя

Чтобы определить номинальную активную электрическую мощность асинхронного электродвигателя, опираясь на данные с шильдика, необходимо принять в расчет КПД. Так, для данного электродвигателя КПД составляет 83%.

Что это значит? Это значит, что только часть активной мощности, подаваемой из сети на обмотки статора двигателя, и безвозвратно потребляемой двигателем, преобразуется в механическую мощность на валу. Активная мощность равна P = P1/КПД. Для нашего примера, по представленному шильдику видим, что P1 = 2200, КПД = 83%. Значит P = 2200/0,83 = 2650 Вт.

Номинальная полная электрическая мощность асинхронного электродвигателя

Полная электрическая мощность, подаваемая на статор электродвигателя от сети всегда больше механической мощности на валу и больше активной мощности, безвозвратно потребляемой электродвигателем.

Для нахождения полной мощности достаточно активную мощность разделить на косинус фи. Таким образом, полная мощность S = P/Cosφ. Для нашего примера P = 2650 Вт, Cosφ = 0,87. Следовательно полная мощность S = 2650/0,87 = 3046 ВА.

Номинальная реактивная электрическая мощность асинхронного электродвигателя

Часть полной мощности, подаваемой на обмотки статора асинхронного электродвигателя, возвращается в сеть. Это реактивная мощность Q.

Q = √(S2 — P2)

Реактивная мощность связана с полной мощностью через sinφ, и связана с активной и с полной мощностью через квадратный корень. Для нашего примера:

Q = √(30462 — 26502) = 1502 ВАР

Реактивная мощность Q измеряется в ВАР — в вольт-амперах реактивных.

Теперь давайте рассмотрим механические характеристики нашего асинхронного двигателя: номинальный рабочий момент на валу, угловую скорость, линейную скорость, частоту вращения ротора и ее связь с частотой питания электродвигателя.

Частота вращения ротора асинхронного электродвигателя

На шильдике мы видим, что при питании переменным током частотой в 50 Гц, ротор двигателя совершает при номинальной нагрузке 2870 оборотов в минуту, обозначим эту частоту как n1.

Что это значит? Поскольку магнитное поле в обмотках статора создается переменным током частотой 50 Гц, то для двигателя с одной парой полюсов (коим является АИР80В2У3) частота «вращения» магнитного поля, синхронная частота n, оказывается равной 3000 оборотов в минуту, что тождественно 50 оборотам в секунду. Но поскольку двигатель асинхронный, то ротор вращается с отставанием на величину скольжения s.

Значение s можно определить, разделив разность синхронной и асинхронной частот на синхронную частоту, и выразив это значение в процентах:

s = ((n – n1)/n)*100%

Для нашего примера s = ((3000 – 2870)/3000)*100% = 4,3%.

Угловая скорость асинхронного двигателя

Угловая скорость ω выражается в радианах в секунду. Для определения угловой скорости достаточно частоту вращения ротора n1 перевести в обороты в секунду (f), и умножить на 2 Пи, поскольку один полный оборот составляет 2 Пи или 2*3,14159 радиан. Для двигателя АИР80В2У3 асинхронная частота n1 составляет 2870 оборотов в минуту, что соответствует 2870/60 = 47,833 оборотам в секунду.

Умножая на 2 Пи, имеем: 47,833*2*3,14159 = 300,543 рад/с. Можно перевести в градусы, для этого вместо 2 Пи подставить 360 градусов, тогда для нашего примера получится 360*47,833 = 17220 градусов в секунду. Однако подобные расчеты обычно ведут именно в радианах в секунду. Поэтому угловая скорость ω = 2*Пи*f, где f = n1/60.

Линейная скорость асинхронного электродвигателя

Линейная скорость v относится к оборудованию, на котором асинхронный двигатель установлен в качестве привода. Так, если на вал двигателя установлен шкив или, скажем, наждачный диск, известного радиуса R, то линейная скорость точки на краю шкива или диска может быть найдена по формуле:

v = ωR

Номинальный вращающий момент асинхронного двигателя

Каждый асинхронный электродвигатель характеризуется номинальным вращающим моментом Мн. Вращающий момент М связан с механической мощностью P1 через угловую скорость следующим образом:

P = ωМ

Вращающий момент или момент силы, действующей на определенном расстоянии от центра вращения, для двигателя сохраняется, причем с ростом радиуса уменьшается сила, а чем радиус меньше, тем больше сила, поскольку:

М = FR

Так, чем больше радиус шкива, тем меньшая сила действует на его краю, а наибольшая сила действует непосредственно на валу электродвигателя.

Для приведенного в качестве примера двигателя АИР80В2У3 мощность P1 равна 2200 Вт, а частота n1 равна 2870 оборотов в минуту или f = 47,833 оборота в секунду. Следовательно угловая скорость составляет 2*Пи*f, то есть 300,543 рад/с, и номинальный вращающий момент Мн равен P1/(2*Пи*f). Мн = 2200/(2*3,14159*47,833) = 7,32 Н*м.

Таким образом, исходя из данных, указанных на шильдике асинхронного электродвигателя, можно найти все основные электрические и механические его параметры.

Надеемся, что данная статья помогла вам разобраться в том, как связаны между собой угловая скорость, частота, вращающий момент, активная, полезная и полная мощность, а также КПД электродвигателя.

Андрей Повный

Мощность электродвигателя

Наиболее распространенным типом промышленных силовых установок являются асинхронные электродвигатели. Один из наиболее важных их параметров — мощность электродвигателя, которая в зависимости от модели может варьироваться в широких пределах. От мощности зависит тип энергосистемы, к которой двигатель можно подключить, а также тип и производительность оборудования, с которым он будет сопряжен. По этой причине, не зная мощность электродвигателя, использовать его практически невозможно.

Определение мощности электромотора по размерам сердечка статора

Если технического паспорта нет, можно произвести расчет мощности электродвигателя, исходя из размеров сердечника статора и частоты вращения. Для этого используется формула P2H = C * D12 / N1 * 10-6кВт. Здесь:
С —постоянная мощность;
D — размер внутреннего диаметра сердечника статора в см;
l — длина статора в см;
N1 — значение синхронной частоты вращения в об/мин.

Постоянная мощность зависит от частоты вращения и габаритов мотора. Она определяется по величине полюсного деления как зависимость мощности от количества полюсов и размеров полюсного деления τ, если U1 < 500В.

Число полюсов Полюсное деление, см
10 20 30 40 50 60
2 0,4 1,4 2,2 2,7 3,15 3,9
4 1,1 2,2 3,0 3,5 3,8 4,2
6 1,7 2,9 3,8 4,35 4,8

τ = πD1 / 2р см.
2р здесь — количество полюсов в моторе.

Полученный по этой формуле результат необходимо округлить до наиболее подходящего значения в таблице. Это самый простой и доступный метод, по которому может быть осуществлен расчет мощности электродвигателя.

Подбор требуемой мощности электродвигателя

Правильно подобранная мощность электродвигателя позволяет получить оптимальные технико-экономические показатели электропривода по себестоимости, размерам, экономичности и прочим параметрам. При стабильной нагрузке на электродвигатель определить его мощность можно просто выбором по каталогу, исходя из соотношения Рн ≥ Рнагр. Здесь Рн — это мощность подбираемого двигателя, а Рнагр — предполагаемая мощность нагрузки.

Потребляемая мощность электромотора

Рисунок 1. Шильдик с параметрами на корпусе электродвигателя Работая с электромоторами, нужно знать, как по шильдику определяется потребляемая мощность электродвигателя. Значение мощности Р — это не электрическая мощность мотора, а механическая мощность на валу, обозначенная в кВт.

Чтобы найти потребляемую мощность, нужно обратить внимание на КПД и cosφ двигателя, указанные на шильдике. Причем КПД может быть обозначен как просто буквами КПД, так и буквой η, что и видно на шильдике. Сначала необходимо найти активную мощность, потребляемую двигателем от сети, по формуле Ра = Р / КПД.

Т. е. в нашем случае (рис. 1) потребляемая электродвигателем из сети активная мощность равна Ра = 0,75кВт/0,75 = 1 кВт. Теперь, чтобы найти полную потребляемую мощность, нужно воспользоваться формулой S = Pa/cosφ = 1/0,78 = 1,28 кВт.

Коэффициент мощности электромотора

Коэффициент мощности электродвигателя, или cos φ — это соотношение активной и полной мощности двигателя. Определяется коэффициент мощности электродвигателя по формуле cosφ = P/S. Здесь:
Р — активная мощность в Вт;
S — полная мощность в ВА.

В большинстве случаев активная мощность имеет меньшее значение, чем полная, из-за чего коэффициент составляет меньше единицы. Только тогда, когда нагрузка будет исключительно активной, cosφ станет равен единице.

Чем ниже коэффициент мощности потребителя, тем более мощными должны быть трансформаторы, электрические станции, а также питающие линии электропередач. Кроме того, моторы с низким коэффициентом имеют меньший КПД и большие энергопотери.

Мощность и вращающий момент электродвигателя

Данная глава посвящена вращающему моменту: что это такое, для чего он нужен и др. Мы также разберём типы нагрузок в зависимости от моделей насосов и соответствие между электродвигателем и нагрузкой насоса.

Вы когда-нибудь пробовали провернуть вал пустого насоса руками? Теперь представьте, что вы поворачиваете его, когда насос заполнен водой. Вы почувствуете, что в этом случае, чтобы создать вращающий момент, требуется гораздо большее усилие.

А теперь представьте, что вам надо крутить вал насоса несколько часов подряд. Вы бы устали быстрее, если бы насос был заполнен водой, и почувствовали бы, что потратили намного больше сил за тот же период времени, чем при выполнении тех же манипуляций с пустым насосом. Ваши наблюдения абсолютно верны: требуется большая мощность, которая является мерой работы (потраченной энергии) в единицу времени. Как правило, мощность стандартного электродвигателя выражается в кВт.

Вращающий момент (T) — это произведение силы на плечо силы. В Европе он измеряется в Ньютонах на метр (Нм).

Как видно из формулы, вращающий момент увеличивается, если возрастает сила или плечо силы — или и то и другое. Например, если мы приложим к валу силу в 10 Н, эквивалентную 1 кг, при длине рычага (плече силы) 1 м, в результате, вращающий момент будет 10 Нм. При увеличении силы до 20 Н или 2 кг, вращающий момент будет 20 Нм. Таким же образом, вращающий момент был бы 20 Нм, если бы рычаг увеличился до 2 м, а сила составляла 10 Н. Или при вращающем моменте в 10 Нм с плечом силы 0,5 м сила должна быть 20 Н.

Работа и мощность

Теперь остановимся на таком понятии как «работа», которое в данном контексте имеет особое значение. Работа совершается всякий раз, когда сила — любая сила — вызывает движение. Работа равна силе, умноженной на расстояние. Для линейного движения мощность выражается как работа в определённый момент времени.

Если мы говорим о вращении, мощность выражается как вращающий момент (T), умноженный на частоту вращения (w).

Частота вращения объекта определяется измерением времени, за которое определённая точка вращающегося объекта совершит полный оборот. Обычно эта величина выражается в оборотах в минуту, т.е. мин-1 или об/мин. Например, если объект совершает 10 полных оборотов в минуту, это означает, что его частота вращения: 10 мин-1 или 10 об/мин.

Итак, частота вращения измеряется в оборотах в минуту, т.е. мин-1.

Приведем единицы измерения к общему виду.

Для наглядности возьмём разные электродвигатели, чтобы более подробно проанализировать соотношение между мощностью, вращающим моментом и частотой вращения. Несмотря на то, что вращающий момент и частота вращения электродвигателей сильно различаются, они могут иметь одинаковую мощность.

Например, предположим, что у нас 2-полюсный электродвигатель (с частотой вращения 3000 мин-1) и 4-полюсной электродвигатель (с частотой вращения 1500 мин-1). Мощность обоих электродвигателей 3,0 кВт, но их вращающие моменты отличаются.

Таким образом, вращающий момент 4-полюсного электродвигателя в два раза больше вращающего момента двухполюсного электродвигателя с той же мощностью.

Как образуется вращающий момент и частота вращения?

Теперь, после того, как мы изучили основы вращающего момента и скорости вращения, следует остановиться на том, как они создаются.

В электродвигателях переменного тока вращающий момент и частота вращения создаются в результате взаимодействия между ротором и вращающимся магнитным полем. Магнитное поле вокруг обмоток ротора будет стремиться к магнитному полю статора. В реальных рабочих условиях частота вращения ротора всегда отстаёт от магнитного поля. Таким образом, магнитное поле ротора пересекает магнитное поле статора и отстает от него и создаёт вращающий момент. Разницу в частоте вращения ротора и статора, которая измеряется в %, называют скоростью скольжения.

Скольжение является основным параметром электродвигателя, характеризующий его режим работы и нагрузку. Чем больше нагрузка, с которой должен работать электродвигатель, тем больше скольжение.

Помня о том, что было сказано выше, разберём ещё несколько формул. Вращающий момент индукционного электродвигателя зависит от силы магнитных полей ротора и статора, а также от фазового соотношения между этими полями. Это соотношение показано в следующей формуле:

Сила магнитного поля, в первую очередь, зависит от конструкции статора и материалов, из которых статор изготовлен. Однако напряжение и частота тока также играют важную роль. Отношение вращающих моментов пропорционально квадрату отношения напряжений, т.е. если подаваемое напряжение падает на 2%, вращающий момент, следовательно, уменьшается на 4%.

Момент электродвигателя

Мощность связывает вращающий момент с частотой вращения, чтобы определить общий объём работы, который должен быть выполнен за определённый промежуток времени.

Рассмотрим взаимодействие между вращающим моментом, мощностью и частотой вращения, а также их связь с электрическим напряжением на примере электродвигателей Grundfos. Электродвигатели имеют одну и ту же номинальную мощность как при 50 Гц, так и при 60 Гц.

Это влечёт за собой резкое снижение вращающего момента при 60 Гц: частота 60 Гц вызывает 20%-ное увеличение числа оборотов, что приводит к 20%-ному уменьшению вращающего момента. Большинство производителей предпочитают указывать мощность электродвигателя при 60 Гц, таким образом, при снижении частоты тока в сети до 50 Гц электродвигатели будут обеспечивать меньшую мощность на валу и вращающий момент. Электродвигатели обеспечивают одинаковую мощность при 50 и 60 Гц.

Графическое представление вращающего момента электродвигателя изображено на рисунке.

Иллюстрация представляет типичную характеристику вращающий момент/частота вращения. Ниже приведены термины, используемые для характеристики вращающего момента электродвигателя переменного тока.

Пусковой момент (Мп): Механический вращающий момент, развиваемый электродвигателем на валу при пуске, т.е. когда через электродвигатель пропускается ток при полном напряжении, при этом вал застопорен.

Минимальный пусковой момент (Ммин): Этот термин используется для обозначения самой низкой точки на кривой вращающий момент/частота вращения электродвигателя, нагрузка которого увеличивается до полной скорости вращения. Для большинства электродвигателей Grundfos величина минимального пускового момента отдельно не указывается, так как самая низкая точка находится в точке заторможенного ротора. В результате для большинства электродвигателей Grundfos минимальный пусковой момент такой же, как пусковой момент.

Блокировочный момент (Мблок): Максимальный вращающий момент — момент, который создаёт электродвигатель переменного тока с номинальным напряжением, подаваемым при номинальной частоте, без резких скачков скорости вращения. Его называют предельным перегрузочным моментом или максимальным вращающим моментом.

Вращающий момент при полной нагрузке (Мп.н.): Вращающий момент, необходимый для создания номинальной мощности при полной нагрузке.

Нагрузка насосов и типы нагрузки электродвигателя

Выделяют следующие типы нагрузок:

Постоянная мощность

Термин «постоянная мощность» используется для определённых типов нагрузки, в которых требуется меньший вращающий момент при увеличении скорости вращения, и наоборот. Нагрузки при постоянной мощности обычно применяются в металлообработке, например, сверлении, прокатке и т.п.

Постоянный вращающий момент

Как видно из названия — «постоянный вращающий момент» — подразумевается, что величина вращающего момента, необходимого для приведения в действие какого- либо механизма, постоянна, независимо от скорости вращения. Примером такого режима работы могут служить конвейеры.

Переменный вращающий момент и мощность

«Переменный вращающий момент» — эта категория представляет для нас наибольший интерес. Этот момент имеет отношение к нагрузкам, для которых требуется низкий вращающий момент при низкой частоте вращения, а при увеличении скорости вращения требуется более высокий вращающий момент. Типичным примером являются центробежные насосы.

Вся остальная часть данного раздела будет посвящена исключительно переменному вращающему моменту и мощности.

Определив, что для центробежных насосов типичным является переменный вращающий момент, мы должны проанализировать и оценить некоторые характеристики центробежного насоса. Использование приводов с переменной частотой вращения обусловлено особыми законами физики. В данном случае это законы подобия, которые описывают соотношение между разностями давления и расходами.

Во-первых, подача насоса прямо пропорциональна частоте вращения. Это означает, что если насос будет работать с частотой вращения на 25% больше, подача увеличится на 25%.

Во-вторых, напор насоса будет меняться пропорционально квадрату изменения скорости вращения. Если частота вращения увеличивается на 25%, напор возрастает на 56%.

В-третьих, что особенно интересно, мощность пропорциональна кубу изменения скорости вращения. Это означает, что если требуемая частота вращения уменьшается на 50%, это равняется 87,5%-ному уменьшению потребляемой мощности.

Итак, законы подобия объясняют, почему использование приводов с переменной частотой вращения более целесообразно в тех областях применения, где требуются переменные значения расхода и давления. Grundfos предлагает ряд электродвигателей со встроенным частотным преобразователем, который регулирует частоту вращения для достижения именно этой цели.

Так же как подача, давление и мощность, потребная величина вращающего момента зависит от скорости вращения.

На рисунке показан центробежный насос в разрезе. Требования к вращающему моменту для такого типа нагрузки почти противоположны требованиям при «постоянной мощности». Для нагрузок при переменном вращающем моменте потребный вращающий момент при низкой частоте вращения — мал, а потребный вращающий момент при высокой частоте вращения — велик. В математическом выражении вращающий момент пропорционален квадрату скорости вращения, а мощность — кубу скорости вращения.

Это можно проиллюстрировать на примере характеристики вращающий момент/частота вращения, которую мы использовали ранее, когда рассказывали о вращающем моменте электродвигателя:

Когда электродвигатель набирает скорость от нуля до номинальной скорости, вращающий момент может значительно меняться. Величина вращающего момента, необходимая при определённой нагрузке, также изменяется с частотой вращения. Чтобы электродвигатель подходил для определённой нагрузки, необходимо чтобы величина вращающего момента электродвигателя всегда превышала вращающий момент, необходимый для данной нагрузки.

В примере, центробежный насос при номинальной нагрузке имеет вращающий момент, равный 70 Нм, что соответствует 22 кВт при номинальной частоте вращения 3000 мин-1. В данном случае насосу при пуске требуется 20% вращающего момента при номинальной нагрузке, т.е. приблизительно 14 Нм. После пуска вращающий момент немного падает, а затем, по мере того, как насос набирает скорость, увеличивается до величины полной нагрузки.

Очевидно, что нам необходим насос, который будет обеспечивать требуемые значения расход/напор (Q/H). Это значит, что нельзя допускать остановок электродвигателя, кроме того, электродвигатель должен постоянно ускоряться до тех пор, пока не достигнет номинальной скорости. Следовательно, необходимо, чтобы характеристика вращающего момента совпадала или превышала характеристику нагрузки на всём диапазоне от 0% до 100% скорости вращения. Любой «избыточный» момент, т.е. разница между кривой нагрузки и кривой электродвигателя, используется как ускорение вращения.

Соответствие электродвигателя нагрузке

Если нужно определить, отвечает ли вращающий момент определённого электродвигателя требованиям нагрузки, Вы можете сравнить характеристики скорости вращения/вращающего момента электродвигателя с характеристикой скорости вращения/ вращающего момента нагрузки. Вращающий момент, создаваемый электродвигателем, должен превышать потребный для нагрузки вращающий момент, включая периоды ускорения и полной скорости вращения.

Характеристика зависимости вращающего момента от скорости вращения стандартного электродвигателя и центробежного насоса.

Если мы посмотрим на характеристику , то увидим, что при ускорении электродвигателя его пуск производится при токе, соответствующем 550% тока полной нагрузки.

Когда двигатель приближается к своему номинальному значению скорости вращения, ток снижается. Как и следовало ожидать, во время начального периода пуска потери на электродвигателе высоки, поэтому этот период не должен быть продолжительным, чтобы не допустить перегрева.

Очень важно, чтобы максимальная скорость вращения достигалась как можно точнее. Это связано с потребляемой мощностью: например, увеличение скорости вращения на 1% по сравнению со стандартным максимумом приводит к 3%-ному увеличению потребляемой мощности.

Потребляемая мощность пропорциональна диаметру рабочего колеса насоса в четвертой степени.

Уменьшение диаметра рабочего колеса насоса на 10% приводит к уменьшению потребляемой мощности на (1- (0.9 * 0.9 * 0.9 * 0.9)) * 100 = 34%, что равно 66% номинальной мощности. Эта зависимость определяется исключительно на практике, так как зависит от типа насоса, конструкции рабочего колеса и от того, насколько вы уменьшаете диаметр рабочего колеса.

Время пуска электрдвигателя

Если нам необходимо подобрать типоразмер электродвигателя для определённой нагрузки, например для центробежных насосов, основная наша задача состоит в том, чтобы обеспечить соответствующий вращающий момент и мощность в номинальной рабочей точке, потому что пусковой момент для центробежных насосов довольно низкий. Время пуска достаточно ограниченно, так как вращающий момент довольно высокий.

Нередко для сложных систем защиты и контроля электродвигателей требуется некоторое время для их пуска, чтобы они могли замерить пусковой ток электродвигателя. Время пуска электродвигателя и насоса рассчитывается с помощью следующей формулы:

tпуск = время, необходимое электродвигателю насоса, чтобы достичь частоты вращения при полной нагрузке

n = частота вращения электродвигателя при полной нагрузке

Iобщ = инерция, которая требует ускорения, т.е. инерция вала электродвигателя, ротора, вала насоса и рабочих колёс.

Момент инерции для насосов и электродвигателей можно найти в соответствующих технических данных.

Мизб = избыточный момент, ускоряющий вращение. Избыточный момент равен вращающему моменту электродвигателя минус вращающий момент насоса при различных частотах вращения.

Мизб можно рассчитать по следующим формулам:

Как видно из приведённых вычислений, выполненных для данного примера с электродвигателем мощностью 4 кВт насоса CR, время пуска составляет 0,11 секунды.

This entry was posted in Ремонт. Bookmark the <a href="https://kabel-house.ru/remont/moshhnost-asinhronnogo-dvigatelya/" title="Permalink to Мощность асинхронного двигателя" rel="bookmark">permalink</a>.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *