Магнитная левитация

Магнитная левитация

Левитирующий пиролитический графит

Магнитная левитация — технология, метод подъёма объекта с помощью одного только магнитного поля. Магнитное давление используется для компенсации ускорения свободного падения или любых других ускорений.

Теорема Ирншоу доказывает, что, используя только ферромагнетики, невозможно устойчиво удерживать объект в гравитационном поле. Несмотря на это, с помощью сервомеханизмов, диамагнетиков, сверхпроводников и систем с вихревыми токами левитация возможна.

В некоторых случаях подъёмная сила обеспечивается магнитной левитацией, но при этом есть механическая поддержка, дающая устойчивость. В этих случаях явление называется псевдолевитация.

Магнитная левитация используется в маглевах, магнитных подшипниках и показе продукции.

> Способы реализации магнитной левитации

  1. С использованием постоянного магнита
  2. С использованием электромагнита
  3. С использованием сверхпроводящего магнита

> Основные типы магнитной левитации

  1. При помощи электромагнитных систем
  2. При помощи электродинамических систем

Устойчивость

Статическая

Статическая устойчивость значит, что любое смещение из состояния равновесия заставляет равнодействующую силу выталкивать объект обратно в состояние равновесия.

Теорема Ирншоу окончательно доказала, что невозможно левитировать объект, используя только статичные макроскопические магнитные поля. Силы, действующие на любой парамагнетик в любой комбинации с гравитационными, электростатическими, и магнитостатическими сделают положение объекта в лучшем случае неустойчивым относительно одной оси и это может дать неустойчивое равновесие относительно всех осей. Тем не менее, существует несколько возможностей сделать левитацию реальной, на примере использования электронной стабилизации или диамагнетиков (так как Магнитная проницаемость меньше) может быть показано, что диамагнитные материалы устойчивы относительно как минимум одной оси и могут быть устойчивы относительно всех осей. Проводники имеют относительную проницаемость к переменным магнитным полям последнего, так что некоторые конфигурации, использующие магниты, работающие на переменном токе, устойчивы сами по себе.

Динамическая

Динамическая устойчивость проявляется в случаях, когда левитирующая система способна подавить любое возможное виброобразное движение.

Магнитные поля являются консервативными силами и поэтому в принципе не могут иметь встроенный способ подавления. Фактически, многие схемы левитации имеют недостаточное подавление. Таким образом, вибрации могут существовать и вывести объект за пределы зоны равновесия.

Подавление движения осуществляется несколькими способами:

  • внешнее механическое подавление, например лобовое сопротивление
  • использование вихревых токов (влияние на проводник полем)
  • инерционный демпфер в левитируемом объекте
  • электромагниты, управляемые посредством электроники

Принцип работы

Будучи в раскрученном состоянии, магнитный волчок массой ~20 граммов способен зависнуть над специально расположенной системой постоянных магнитов в коробке (так как магниты постоянные, левитрон не требует источника электрического тока). Волчок представляет из себя кольцевой постоянный магнит с осью вращения, совпадающей с осью симметрии этого магнита. Магнит в коробке обычно тоже кольцо, но большего диаметра. Форма магнитного поля обусловлена сочетанием этих двух размеров. Над центром большого магнита на определённом расстоянии образуется потенциальная яма, то есть небольшая зона, магнитное поле в центре которой несколько слабее, чем у краёв. Это не дает волчку отклониться от центра коробки. Размер этой зоны определяет вес, магнитное поле волчка, и место, где явление возможно. Вращение необходимо для того, чтобы волчок не перевернулся. Момент инерции вращающегося тела, в соответствии с законом сохранения момента импульса удерживает волчок в положении отталкивающим полюсом вниз. Волчок испытывает силу трения только о воздух, вследствие чего он может парить довольно долго.

Более сложные варианты отличаются лишь тем, что используют тот или иной способ раскручивания предмета, который обычно заключён внутри небольшого глобуса. Тогда «левитация» длится, пока устройство не будет выключено или в нём не разрядятся батарейки. В нижней коробке дополнительно находится электромагнитная катушка-передатчик, а в верхнем предмете катушка-приёмник, которые совместно образуют воздушный трансформатор. Подобные устройства питания известны в виде беспроводных индукционных компьютерных мышей, где провод ведёт только к коврику. Передаваемой мощности может хватать даже на подсветку такого глобуса.

Магнитная левитация. Виды и работа. Применение и особенности

Магнитная левитация – это технология, позволяющая поднимать объекты в воздух с помощью магнитного поля. Само слово «левитация» происходит от английского «levitate», которое можно перевести как «парить» или «подниматься в воздух». Фактически, данное физическое явление позволяет преодолеть гравитацию без применения реактивной тяги или аэродинамики, как это осуществляется самолетами, вертолетами и дронами.

Почему происходит магнитная левитация

С физической точки зрения левитация является устойчивым положением объекта в гравитационном поле. Фактически, сила тяжести компенсируется с силами воздействующими на предмет, которые его поднимают. В определенной точке данные силы уравниваются, благодаря чему объекты зависают. То понятие, которое укладывается в слово «левитация» в чистом виде недостижимо, что давно является доказанным фактом. На деле парение объекта достигается только путем воздействия на него магнитного поля. При этом сам предмет, который зависает в воздухе, не обладает свойствами парить без внешнего воздействия. Он не сможет делать это абсолютно в любых условиях и на разной высоте.

Условия, которые необходимо обеспечить, чтобы осуществить магнитную левитацию, могут отличаться. Существует несколько технологий, которые позволяют добиться эффекта парения:

  • Электромагнитная.
  • Диамагнитная.
  • Сверхпроводниковая.
  • Вихретоковая.
Электромагнитная

Данная технология подъема объекта над поверхностью подразумевает применение . Он располагается в нижней части устройства. На него укладываются легкие металлические предметы. Над электромагнитом с помощью стойки закрепляется фотоэлемент. Задача последнего заключается в подачи и прерывания питания на электрический магнит. Если фотоэлемент улавливает тень, то он включает или отключает питание, что зависит от места его расположения. Это происходит с периодичностью в доли секунды.

Принцип работы данной технологии подразумевает создание кратковременного воздействия электромагнитного поля на металлический объект. Катушка его подталкивает, после чего отключается, и предмет начинает падать вниз. Сразу же катушка снова создает электромагнитное поле поднимающее объект, и он взлетает. Цикличное воздействие необходимо для того, чтобы обеспечить возможность контроля местоположения парящего предмета. Дело в том, что постоянное электромагнитное поле смещает объект, пока он не выйдет из зоны воздействия и не упадет под влиянием силы притяжения. Если же циклично включать и отключать поле, то предмет будет просто подскакивать, фактически не удаляясь от точки нахождения.

При взгляде со стороны благодаря высокой частоте подачи и отключения электромагнитного воздействия, парящий предмет выглядит практически неподвижным. Это создает впечатление его реальной левитации. Данная технология является весьма популярной при производстве сувениров. Примером ее реализации является летающий глобус. Недостаток данного способа заключается в определенной сложности запуска устройства. Необходимо закрыть фотодатчик, приподнять предмет для левитации, после чего открыть систему фотодатчика. Далее он возьмет контроль удержания предмета на себя. В том случае, если произойдут перебои с электричеством и объект упадет, то после подачи питания он уже не взлетит без вмешательства человека.

Диамагнитная

Для реализации данной технологии применяются диамагнетики. Эти вещества намагничиваются против внешнего магнитного поля. Отдельные материалы могут полностью вытеснять свое магнитное поле. Примером такого вещества является графит. Довольно известным экспериментом является магнитная левитация стержня из обычного карандаша. Он зависает над неодимовыми магнитами. Для этого их необходимо расставить в шахматном порядке поворачивая разными полюсами к верху. При таких условиях стержень не будет вытолкнут за пределы площадки, поэтому останется левитировать постоянно. Неодимовые магниты имеют более стабильное поле, поэтому если созданная поверхность в шахматном порядке будет иметь достаточную площадь, касательно длины графитового стержня, то тот зависнет неподвижно.

Живые существа тоже обладают свойствами диамагнетиков, поэтому под воздействием магнитного поля с высокой индукцией также могут парить. Примером этого является научный эксперимент с летающей лягушкой. Для некрупного земноводного достаточно создать индукцию больше 16 Тл, и лягушка начинает парить в воздухе на небольшой высоте.

Сверхпроводниковая

Магнитная левитация по данной технологии также известна как метод Мейснера. Эффект парения достигается путем размещения магнита над сверхпроводником. В его качестве применяется оксид иттрия-бария-меди. Данное вещество приобретает способность сверхпроводника при снижении его температуры. Для этого необходимо обеспечение его контакт с жидким азотом.

Эксперимент по левитации подразумевает помещение пластины в ванночку с жидким азотом. Оксид иттрия-бария-меди практически мгновенно охлаждается. Если над ним поместить магнит, то тот начнет левитировать. Высота между магнитом и сверхпроводником напрямую зависят от силы индукции. Чем она выше, тем на большем расстоянии окажется магнит. Предмет как бы всплывает над сверхпроводником и весьма устойчиво парит до момента, пока пластина не остынет, потеряв свои свойства.

Вихретоковая магнитная левитация

Еще одним способом создания магнитной левитации является использование вихревых токов и массивных проводников. Катушка, выдающая вихревой ток может левитировать над замкнутым кольцом из цветного металла. Аналогичная ситуация наблюдается и с дисками из данного металла, уложенными над большими катушками.

Это обусловлено тем, что по закону Ленца индексируемый в данном случае цветной металл будет создавать магнитное поле противоположное от того, что на него воздействует. Иными словами, в каждый период колебания переменного тока в катушке будет создаваться противоположное по направлению магнитное поле. Поскольку они отталкивают друг друга, то более легкий предмет будет левитировать над тяжелым.

Еще одним примером вихревой левитации является пропускание неодимового магнита через толстостенную медную трубу. В этом случае постоянное парение не происходит, но магнит замедляется. Его падение сквозь трубу напоминает замедленную съемку или погружение в густую жидкость.

Масштабные применение эффекта парения

Магнитная левитация нашла свое применение не только при создании сувениров. Одним из самых масштабных способов использования данной технологии является современный железнодорожный транспорт на магнитной подушке. Такой поезд двигается очень тихо, поскольку не имеет колес, которые создают трение и стук. Как следствие самый известный проект такого транспорта, который был построен в Японии, смог развить скорость в 581 км/час. Единственный в мире поезд, который работает по данной технологии на постоянном маршруте, располагается в Шанхае. Он соединяет метро и аэропорт. Поезд позволяет преодолевать расстояние в 30 км между конечными станциями приблизительно за 7 минут.

Как с помощью неодимовых магнитов создать явление диамагнитная левитация?

Это очень интересное явление магнетизма.

Вот пример сверхпроводящей левитации с неодимовым магнитом:

Левитация неодимового магнита над высокотемпературным сверхпроводником.

В качестве сверхпроводника используется двадцать слоёв сверхпроводящей ленты компании «СуперОкс», спаянные в единый пакет. Охлаждение — жидкий азот.

Разместив магнит над сверхпроводником перед охлаждением, мы фиксируем его будущее положение, т.к. при этом магнитное поле «вмораживается» в сверхпроводник второго рода. Если сначала охладить сверхпроводник, а потом поднести магнит, то магнит будет просто отталкиваться, «сползая» в сторону. В принципе можно магнитное поле «вдавить» в сверхпроводник, приблизив магнит настолько близко, что в сверхпроводнике ток достигнет критического, но в этом случае сложно добиться точно того устойчивого положения магнита, какое нужно.

Далее представлена диамагнитная левитация с помощью неодимового магнита и пирографита.

Левитация без затрат энергии. Пирографит + неодимовый магнит = диамагнитная левитация.

Магнитная левитация с помощью неодимовых магнитов. Держит вес 5 кг.

Здесь представлены только некоторые примеры из возможных явлений диамагнитной левитации и магнитной левитации при помощи очень сильных неодимовых магнитов.

Наглядный интерес для обучения и развлечения представляет пленка для визуализации силовых линий магнитного поля. Если аккуратно разложить неодимовые магниты, то их совместные поля будут способствовать такому явлению, как диамагнитная левитация. Это означает, что некоторые небольшие предметы могут летать в воздухе без контакта с самими магнитными элементами. Если попытаться перетащить магнитик по какой либо немагнитной поверхности (медь, алюминий), то можно на собственном опыте ощутить «магнитное нарушение», то есть сопротивление от вихревых токов, которые возникают во время движения магнитного элемента по такому виду поверхности.

Удивительные и интересные явления с помощью которых можно делать различные трюки для фильмов и фокусов, для изготовления интересных вещей интерьера, для работы на заводе, в научных методах и для многих других полезных целей.

This entry was posted in Ремонт. Bookmark the <a href="https://kabel-house.ru/remont/magnitnaya-levitatsiya/" title="Permalink to Магнитная левитация" rel="bookmark">permalink</a>.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *