Конденсатор переменного тока

Описание конденсатора постоянного тока

Электрические цепи бывают двух видов — постоянными или переменными. Все зависит от того, как в них протекает электроток. Устройства в этих цепях ведут себя по-разному.

Чтобы рассмотреть, как будет вести себя конденсатор в цепи постоянного тока, нужно:

  1. Взять блок питания постоянного напряжения и определить значение напряжения. Например, «12 Вольт».
  2. Установить лампочку, рассчитанную на такое же напряжение.
  3. В сеть установить конденсатор.

Никакого эффекта не будет: лампочка так и не засветится, а если убрать из цепи конденсатор, то свет появится. Если устройство будет включено в сеть переменного тока, то она попросту не будет замыкаться, поэтому и никакой электроток здесь пройти не сможет. Постоянный — не способен проходить по сети, в которую включен конденсатор. Всему виной обкладки этого устройства, а точнее, диэлектрик, который разделяет эти обкладки.

Убедиться в отсутствии напряжения в сети постоянного электротока можно и другими способами. Подключать к сети можно, что угодно, главное, чтобы в цепь был включен источник постоянного электротока. Элементом же, который будет сигнализировать об отсутствии напряжения в сети или, наоборот, о его присутствии, также может быть любой электроприбор. Лучше всего для этих целей использовать лампочку: она будет светиться, если электроток есть, и не будет гореть при отсутствии напряжения в сети.

Можно сделать вывод, что конденсатор не способен проводить через себя постоянный ток, однако это заключение неправильное. На самом деле электроток сразу после подачи напряжения появляется, но мгновенно и исчезает. В этом случае он проходит в течение лишь нескольких долей секунды. Точная продолжительность зависит от того, насколько емким является устройство, но это, как правило, в расчет не берется.

Особенности устройства с переменным электротоком

Чтобы определить, будет ли проходить переменный электроток, необходимо устройство подключить в соответствующую цепь. Основным источником электроэнергии в таком случае должно являться устройство, генерирующее именно переменный электроток.

Постоянный электрический ток не идет через конденсатор, а вот переменный, наоборот, протекает, причем устройство постоянно оказывает сопротивление проходящему через него электротоку. Величина этого сопротивления связана с частотой. Зависимость здесь обратно пропорциональная: чем ниже частота, тем выше сопротивление. Если к источнику переменного электротока подключить кондер, то наибольшее значение напряжения здесь будет зависеть от силы тока.

Убедиться в том, что конденсатор может проводить переменный электроток, наглядно поможет простейшая цепь, составленная из:

  • Источника тока. Он должен быть переменным.
  • Конденсатора.
  • Потребителя электротока. Лучше всего использовать лампу.

Однако стоит помнить об одном: лампа загорится лишь в том случае, если устройство имеет довольно большую емкость. Переменный ток оказывает на конденсатор такое влияние, что устройство начинает заряжаться и разряжаться. А ток, который проходит по сети во время перезарядки, повышает температуру нити накаливания лампы. В результате она и светится.

От емкости устройства, подключенного к сети переменного тока, во многом зависит электроток перезарядки. Зависимость прямо пропорциональная: чем большей емкостью обладает, тем больше величина, характеризующая силу тока перезарядки. Чтобы в этом убедиться, достаточно лишь повысить емкость. Сразу после этого лампа начнет светиться ярче, так как нити ее будут больше накалены. Как видно, конденсатор, который выступает в качестве одного из элементов цепи переменного тока, ведет себя иначе, нежели постоянный резистор.

При подключении конденсатора переменного тока начинают происходить более сложные процессы. Лучше их понять поможет такой инструмент, как вектор. Главная идея вектора в этом случае будет заключаться в том, что можно представить значение изменяющегося во времени сигнала как произведение комплексного сигнала, который является функцией оси, отображающей время и комплексного числа, которое, наоборот, не связано со временем.

Поскольку векторы представляются некоторой величиной и некоторым углом, начертить их можно в виде стрелки, которая вращается в координатной плоскости. Напряжение на устройстве немного отстает от тока, а оба вектора, которыми они обозначаются, вращаются на плоскости против часовых стрелок.

Конденсатор в сети переменного тока может периодически перезаряжаться: он то приобретает какой-то заряд, то, наоборот, отдает его. Это означает, что кондер и источник переменного электротока в сети постоянно обмениваются друг с другом электрической энергией. Такой вид электроэнергии в электротехнике носит название реактивной.

Конденсатор не позволяет проходить по сети постоянному электротоку. В таком случае он будет иметь сопротивление, приравнивающееся к бесконечности. Переменный же электроток способен проходить через это устройство. В этом случае сопротивление имеет конечное значение.

Стоимость неполярных конденсаторов значительно выше, чем электролитических. Размеры неполярных и полярных конденсаторов тоже значительно отличаются. Электролитические конденсаторы при тех же размерах обладают большей ёмкостью.
Значит, имеет смысл приспособить электролитический конденсатор для пуска асинхронного двигателя.
За счет чего электролитический конденсатор имеет преимущество в емкости, перед не полярными конденсаторами, например, масляными.
Емкость конденсатора зависит, от площади активной поверхности и диэлектрика между ними, а размер его будет зависеть от оксидного слоя, который является диэлектриком. Оксидный слой очень тонкий достигает несколько атомных слоёв. Что позволяет уместить больше активной поверхности конденсатора на ед. площади. Электролит выполняет функцию частичного восстановления оксидного слоя при правильном подключении конденсатора с соблюдением полярности.
Вот и напрашивается ответ, почему нельзя включать полярный конденсатор в сеть переменного тока. Произойдет разрушение оксидного слоя диэлектрика из-за того, что в сети меняется полярность (+-) напряжения с частотой 50 Гц. Разрушится оксидный слой, уменьшится сопротивление, ток увеличится, конденсатор разогревается с выделением газа, произойдет короткое замыкание, сопровождением небольшого взрыва.
Теперь предстоит задача, как подключить электролитический конденсатор в сеть переменного тока, чтобы он не взорвался.
Конденсаторы выбираем по напряжению, не менее 300 – 350В. Конденсаторы подключаем парами, то есть одинаковой емкостью С1 и С2 должны быть например, 300мкФ. Как известно из курса физики, что при последовательном соединении конденсаторов, ёмкость двух конденсаторов будут меньше — меньшей ёмкости конденсатора. Например: (С1*С2)/(С1+ С2) = С(общ.)мкФ (300*300)/(300+300) = 150мкФ
В целях безопасной эксплуатации конденсаторной батареи на предмет взрыва, пусть не сильного, но все токи, её следует поместить в коробочку.
Выпрямительные диоды 1Д – 2Д выбираем по току и напряжению, например, диод Д112-10Х-10 рассчитан на ток 10А Uобр.max,В = 600В Темп.,С = +190С цена = 1 шт. 240.00 руб.
Вот необходимая информация есть, как сделать конденсаторный блок из электролитических конденсаторов.

This entry was posted in Ремонт. Bookmark the <a href="https://kabel-house.ru/remont/kondensator-peremennogo-toka/" title="Permalink to Конденсатор переменного тока" rel="bookmark">permalink</a>.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *