Как работать осциллографом?

Назначение, устройство и описание осциллографа

Если спросить профессионального регулировщика электронной аппаратуры или радиоинженера: «Какой самый главный прибор на вашем рабочем месте?» Ответ будет однозначным: «Конечно, осциллограф!». И это действительно так.

Конечно, невозможно обойтись без мультиметра. Измерить напряжение в контрольных точках схемы, замерить сопротивление и ток, «прозвонить» диод или проверить транзистор все это важно и нужно.

Но когда речь заходит о регулировке и настройке любого электронного устройства от простого телевизора до многоканального передатчика орбитальной станции, то без осциллографа обойтись невозможно.

Осциллограф предназначен для визуального наблюдения и контроля периодических сигналов любой формы: синусоидальной, прямоугольной и треугольной. Благодаря широкому диапазону развёртки он позволяет так развернуть импульс, что можно контролировать даже наносекундные интервалы. Например, измерить время нарастания импульса, а в цифровой аппаратуре это очень важный параметр.

Осциллограф – это своего рода телевизор, который показывает электрические сигналы.

Как работает осциллограф?

Чтобы понять, как работает осциллограф, рассмотрим блок-схему усреднённого прибора. Практически все осциллографы устроены именно так.

На схеме не показаны только два блока питания: высоковольтный источник, который используется для вырабатывания высокого напряжения поступающего на ЭЛТ (электронно-лучевая трубка) и низковольтный, обеспечивающий работу всех узлов прибора. И отсутствует встроенный калибратор, который служит для настройки осциллографа и подготовки его к работе.

Исследуемый сигнал подаётся на вход «Y» канала вертикального отклонения и попадает на аттенюатор, который представляет собой многопозиционный переключатель, регулирующий чувствительность. Его шкала отградуирована в V/см или V/дел. Имеется в виду одно деление координатной сетки нанесённой на экран ЭЛТ. Там же нанесены сами величины: 0,1 В,10 В, 100 В. Если амплитуда исследуемого сигнала неизвестна, мы устанавливаем минимальную чувствительность, например 100 вольт на деление. Тогда даже сигнал амплитудой 300 вольт не выведет прибор из строя.

В комплект любого осциллографа входят делители 1 : 10 и 1 : 100 они представляют собой цилиндрические или прямоугольные насадки с разъёмами с двух сторон. Выполняют те же функции, что и аттенюатор. Кроме того при работе с короткими импульсами они компенсируют ёмкость коаксиального кабеля. Вот так выглядит внешний делитель от осциллографа С1-94. Как видим, коэффициент деления его составляет 1 : 10.

Благодаря внешнему делителю удаётся расширить возможности прибора, так как при его использовании становится возможным исследование электрических сигналов с амплитудой в сотни вольт.

С выхода входного делителя сигнал поступает на предварительный усилитель. Здесь он разветвляется и поступает на линию задержки и на переключатель синхронизации. Линия задержки предназначена для компенсации времени срабатывания генератора развёртки с поступлением исследуемого сигнала на усилитель вертикального отклонения. Оконечный усилитель формирует напряжение, подаваемое на пластины «Y» и обеспечивает отклонение луча по вертикали.

Генератор развёртки формирует пилообразное напряжение, которое подаётся на усилитель горизонтального отклонения и на пластины «X» ЭЛТ и обеспечивает горизонтальное отклонение луча. Он имеет переключатель, градуированный как время на деление («Время/дел»), и шкалу времени развёртки в секундах (s), миллисекундах (ms) и микросекундах (μs).

Устройство синхронизации обеспечивает начало запуска генератора развёртки одновременно с возникновением сигнала в начальной точке экрана. В результате на экране осциллографа мы видим изображение импульса развёрнутое во времени. Переключатель синхронизации имеет следующие положения:

  • Синхронизация от исследуемого сигнала.

  • Синхронизация от сети.

  • Синхронизация от внешнего источника.

Первый вариант наиболее удобный и он используется чаще всего.

Осциллограф С1-94.

Кроме сложных и дорогих моделей осциллографов, которые используются при разработке электронной аппаратуры, нашей промышленностью был налажен выпуск малогабаритного осциллографа C1-94 специально для радиолюбителей. Несмотря на невысокую стоимость, он хорошо зарекомендовал себя в работе и обладает всеми функциями дорогого и серьёзного прибора.

В отличие от своих более «навороченных» собратьев, осциллограф С1-94 обладает достаточно небольшими размерами, а также прост в использовании. Рассмотрим его органы управления. Вот лицевая панель осциллографа С1-94.

Справа от экрана сверху вниз.

  • Ручка: «Фокус».

  • Ручка «Яркость».

    Этими регуляторами можно настроить фокусировку луча на экране, а также его яркость. В целях продления срока службы ЭЛТ желательно выставлять яркость на минимум, но так, чтобы показания были видны достаточно чётко.

  • Кнопка «Сеть». Кнопка включения прибора.

  • Кнопка установки времени развёртки. Грубое переключение коэффициентов развёртки. Можно установить миллисекунды (ms) и микросекунды (μs). Напомним, что 1 ms = 1000 μs. Подробнее о сокращённой записи численных величин.

  • Кнопка режима «Ждущ-Авт».

    Это кнопка выбора ждущего и автоматического режима развёртки. При работе в ждущем режиме запуск и синхронизация развёртки производится исследуемым сигналом. При автоматическом режиме запуск развёртки происходит без сигнала. Для исследования сигнала чаще используется ждущий режим запуска развёртки.

  • Вот этой кнопкой производится выбор полярности запускающего импульса. Можно выбрать запуск от импульса положительной или отрицательной полярности.

  • Кнопка установки синхронизации «Внутр-Внешн».

    Обычно используется внутренняя синхронизация, так как для использования внешнего синхросигнала нужен отдельный источник этого внешнего сигнала. Понятно, что в условиях домашней мастерской это в подавляющем случае не нужно. Вход внешнего синхросигнала на лицевой панели осциллографа выглядит вот так.

  • Кнопка выбора «Открытого» и «Закрытого» входа.

    Тут всё понятно. Если предполагается исследование сигнала с постоянной составляющей, то выбираем «Переменный и постоянный». Этот режим называется «Открытым», так как на канал вертикального отклонения подаётся сигнал, содержащий в своём спектре постоянную составляющую или низкие частоты.

    При этом, стоит учитывать, что при отображении сигнала на экране он уйдёт вверх, так как к амплитуде переменной составляющей добавиться и уровень постоянной составляющей. В большинстве случаев лучше выбирать «закрытый» вход (~). При этом постоянная составляющая электрического сигнала будет отсечена и не отображается на экране.

  • Клемма «корпус» служит для заземления корпуса прибора. Это делается в целях безопасности. В условиях домашней мастерской порой нет возможности заземлить корпус прибора. Поэтому приходится работать без заземления. При этом важно помнить, что во включенном состоянии на корпусе осциллографа может быть потенциал напряжения. При касании корпуса может «дёрнуть». Особенно опасно дотрагиваться одной рукой до корпуса осциллографа, а другой рукой до батарей отопления или других работающих электроприборов. В таком случае опасный потенциал с корпуса пройдёт через ваше тело («рука» — «рука») и вы получите электрический удар! Поэтому при работе осциллографа без заземления желательно не дотрагиваться до металлических частей корпуса. Это правило справедливо и для прочих электроприборов с металлическим корпусом.

  • По центру лицевой панели переключатель «развёртка» — Время/дел. Именно этот переключатель управляет работой генератора развёртки.

  • Чуть ниже располагается переключатель входного делителя (аттенюатора) — V/дел. Как уже говорилось, при исследовании сигнала с неизвестной амплитудой, необходимо выставить максимально возможное значение V/дел. Так для осциллографа С1-94 нужно установить переключатель в положение 5 (5V/дел.). В таком случае одна клетка на координатной сетке экрана будет равна 5-ти вольтам. Если ко входу «Y» осциллографа подключить делитель с коэффициентом деления 1 к 10 (1 : 10), то одна клетка будет равна 50-ти вольтам (5V/дел. * 10 = 50V/дел.).

Также на панели осциллографа имеются:

  • Ручка «Перемещение луча по горизонтали».

    Она служит для корректировки положения луча в горизонтальном направлении. Если покрутить данную ручку, то изображение развёртки будет смешатся либо вправо, либо влево.

  • Также есть и ручка «Перемещение луча по вертикали».

    С помощью её можно отрегулировать положение развёртки на экране по вертикали.

    Ручки «Перемещение луча по горизонтали» и «Перемещение луча по вертикали» служат исключительно для настройки комфортного отображения осциллограммы сигнала на экране. Они никак не влияют на настройку работы самого осциллографа.

  • А вот ручка «Уровень синхронизации» необходима для того, чтобы «остановить» осциллограмму сигнала на экране.

    Поворотом этой ручки добиваются того, чтобы изображение сигнала «застыло», а не «убегало». Иногда, чтобы поймать изображение с помощью ручки «Уровень» приходится изменить время развёртки переключателем Время/дел.

  • Входной разъём «Y» , к которому подключается измерительный щуп или внешний делитель выглядит так.

    Внизу указываются параметры входа, а именно входное сопротивление (1 MΩ) и входная ёмкость (40pF). Чем выше входное сопротивление измерительного прибора, тем лучше. Таким образом при измерении прибор не шунтирует элементы тестируемой схемы и не вносит искажений в измеряемый сигнал. Входная ёмкость прежде всего влияет на возможность исследования высокочастотных сигналов.

В настоящее время, с развитием цифровой техники, стали широко внедряться цифровые осциллографы. По сути это гибрид аналоговой и цифровой техники. Отношение к ним неоднозначное, как к мясорубке с процессором или к кофемолке с дисплеем.

Аналоговая аппаратура всегда была надежной и удобной в работе. Кроме того она легко ремонтировалась. Цифровой осциллограф стоит на порядок дороже и очень сложен в ремонте. Плюсов конечно много. Если аналоговый сигнал с помощью АЦП (аналогово-цифрового преобразователя) перевести в цифровую форму, то с ним можно делать всё что угодно. Его можно записать в память и в любой момент вывести на экран для сравнения с другим сигналом, складывать в фазе и противофазе с другими сигналами. Конечно, аналоговая техника это хорошо, но за цифровой электроникой будущее.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

  • Методика проверки ИК-приёмника.

  • Как определить мощность трансформатора по его размерам?

  • Что такое децибел и для чего он применяется?

▌Старая статья о аналоговом осциллографе
Рано или поздно любой начинающий электронщик, если не бросит свои эксперименты, то дорастет до схем, где нужно отслеживать не просто токи и напряжения, а работу схемы в динамике. Особенно это часто нужно в различных генераторах и импульсных устройствах. Вот тут без осциллографа делать нечего!

Страшный прибор, да? Куча ручек, каких то кнопочек, да еще экран и нифига не понятно что тут да зачем. Ничего, сейчас исправим. Сейчас я тебе расскажу как пользоваться осциллографом.

На самом деле тут все просто — осциллограф, грубо говоря, это всего лишь… вольтметр! Только хитрый, способный показывать изменение формы замеряемого напряжения.
Как всегда, поясню на отвлеченном примере.
Представь, что ты стоишь перед железной дорогой, а мимо тебя с бешеной скоростью мчится бесконечный поезд состоящий из совершенно одинаковых вагонов. Если просто на них стоять и смотреть, то ничего кроме размытой фигни ты не увидишь.
А теперь ставим перед тобой стенку с окошком. И начинаем открывать окошко только тогда, когда очередной вагон будет в том же положении, что и предыдущий. Так как у нас вагоны все одинаковые, то тебе совершенно необязательно видеть один и тот же вагон. В результате картинки разных, но идентичных вагонов будут выскакивать перед твоими глазами в одном и том же положении, а значит картинка как бы остановится. Главное это синхронизировать открытие окошка со скоростью поезда, чтобы при открытии положение вагона не менялось. Если скорость не совпадет, то вагоны будут «двигаться» либо вперед, либо назад со скоростью, зависящую от степени рассинхронизации.

На этом же принципе построен стробоскоп — девайс, позволяющий разглядывать быстро движущиеся или вращающиеся хреновины. Там тоже шторка быстро-быстро открывается и закрывается.

Так вот, осциллограф это тот же стробоскоп, только электронный. А показывает он не вагоны, а периодические изменения напряжения. У той же синусоиды, например, каждый следующий период похож на предыдущий, так почему бы не «остановить» его, показывая в один момент времени один период.

Конструкция
Делается это посредством лучевой трубки, отклоняющей системы и генератора развертки.
В лучевой трубке пучок электронов попадая на экран заставляет светится люминофор, а пластины отклоняющей системы позволяют гонять этот пучок по всей поверхности экрана. Чем сильней напряжение, приложенное к электродам, тем больше отклоняется пучок. Подавая на пластины Х пилообразное напряжение мы создаем развертку. То есть луч у нас движется слева-направо, а потом резко возвращается обратно и продолжает снова. А на пластины Y мы подаем изучаемое напряжение.

Принцип работы
Дальше все просто, если начало появления периода пилы (луч в крайне левом положении) и начало периода сигнала совпадают, то за один проход развертки нарисуется один или несколько периодов измеряемого сигнала и картинка как бы остановится. Меняя скорость развертки можно добиться того, что на экране вообще останется только один период — то есть за один период пилы пройдет один период измеряемого сигнала.
Развертка осциллографа во времени

Синхронизация
Синхронизировать пилу с сигналом можно либо вручную, подстраивая ручкой скорость так, чтобы синусоида остановилась, а можно по уровню. То есть мы указываем при каком уровне напряжения на входе нужно запустить генератор развертки. Как только напряжение на входе превысит уровень, так сразу же запустится генератор развертки и выдаст нам импульс.
В итоге, генератор развертки выдает пилу только тогда, когда надо. В этом случае синхронизация получается полностью автоматической. При выборе уровня следует учитывать такой фактор, как помехи. Так что если взять слишком низкий уровень, то мелкие иголки помех могут запустить генератор когда не нужно, а если взять уровень слишком большой, то сигнал может под ним пройти и ничего не случится. Но тут проще покрутить ручку самому и сразу же все станет понятно.
Также сигнал синхронизации можно подать и с внешнего источника.

Синхронизация по уровню

В топку теорию, переходим к практике.
Показывать буду на примере своего осциллографа, спертого когда то давно с оборонного предприятия КБ «Ротор» :). Обычный осцил, не шибко навороченный, но надежный и простой как кувалда.

Мой верный осциллограф

Итак:
Яркость, фокус и освещение шкалы думаю не требуют пояснений. Это настройки интерфейса.

Усилитель У и стрелочки вверх вниз. Эта ручка позволяет гонять изображение сигнала вверх или вниз. Добавляя ему дополнительное смещение. Зачем? Да иногда не хватает размера экрана, чтобы вместить весь сигнал. Приходится его загонять вниз, принимая за ноль не середину, а нижнюю границу.

Ниже идет тумблер переключающий ввод с прямого, на емкостный. Этот тумблер в том или ином виде есть на всех без исключения осциллографах.

Важная вещь! Позволяет подключать сигнал к усилителю либо напрямую, либо через конденсатор. Если подключить напрямую, то пройдет и постоянная составляющая и переменная. А через кондер проходит только переменная.
Например, надо нам посмотреть на уровень помех блока питания компа. Напряжение там 12 вольт, а величина помех может быть не более 0.3 вольт. На фоне 12 вольт эти жалкие 0.3 вольт будут совсем незаметны. Можно, конечно увеличивать коэффициент усиления по Y, но тогда график вылезет за экран, а смещения по Y не хватит, чтобы увидеть вершину. Тогда нам нужно лишь врубить конденсатор и тогда те 12 вольт постоянки осядут на нем, а в осциллограф пройдет только переменный сигнал, те самые 0.3 вольта помехи. Которые можно усилить и разглядеть в полный рост.

Далее идет коаксиальный разъем подключения щупа. Каждый щуп содержит в себе сигнал и землю. Землю обычно сажают на минус или на общий провод схемы, а сигнальным тычут по схеме. Осциллограф показывает напряжение на щупе относительно общего провода. Чтобы понять где сигнальный, а где земля достаточно взять за них рукой по очереди. Если возьмешься за общий, то на экране по прежнему будет пульс трупа. А если взяться за сигнальный, то увидишь кучу срача на экране — наводки на твое тело, служащее в данный момент антенной. На некторых щупах, особенно на современных осциллографах, внутри встроен делитель напряжения 1:10 или 1:100, который позволяет воткнуть осциллограф хоть в розетку, без риска его спалить. Включается и выключается он тумблером на щупе.

Еще почти на каждом осциллографе есть калибровочный выход. На котором ты всегда можешь найти прямоугольный сигнал частотой 1Кгц и напряжением около полувольта. В зависимости от модели осцила. Используется для проверки работы самого осциллографа, ну иногда и в тестовых целях пригождается 🙂

Две здоровенные крутилки Усиление и Длительность

Усиление служит для масштабирования сигнала по оси Y. Там же показано сколько вольт на деление в итоге покажет.
Скажем, если у тебя стоит 2 вольта на деление, а сигнал на экране достигает высоты две клеточки размерной сетки, значит амплитуда сигнала равна 4 вольта.

Длительность определяет частоту развертки. Чем короче интервал, чем больше частота, тем более высокочастотный сигнал ты сможешь разглядеть. Тут клеточки проградуированы уже в милли и микросекундах. Так что по ширине сигнала ты можешь посчитать сколько он клеток, а умножив его на масштаб по оси Х получишь длительность сигнала в секундах. Также можно посчитать длительность одного периода, а зная длительность легко найти частоту сигнала f=1/t
Верхняя пипка на крутилках позволяет менять масштаб плавно. Обычно у меня она стоит на щелчке, чтобы я всегда четко знал какой у меня масштаб.

Также там есть вход Х на который можно подать свой сигнал, вместо пилы развертки. Таким образом осциллограф может послужить телевизором или монитором, если собрать схему которая будет формировать изображение.

Крутилка с надписью Развертка и стрелочками влево и вправо позволяет гонять график по экрану влево и вправо. Удобно иногда бывает, чтобы подогнать нужный участок под деления сетки.

Блок синхронизации.
Ручка уровня — задает уровень от которого будет стартовать генератор пилы.
Переключатель со внутренней на внешнюю, позволяет подать на вход синхроимпульсы с внешнего источника.
Переключатель с надписью +/- переключает полярность уровня. Есть не на всех осциллографах.
Ручка стабильность — позволяет вручную попытаться подобрать скорость синхронизации.

Быстрый старт.
Итак, включил ты осцил. Первое что нужно сделать это замкнуть сигнальный щуп на свой же земляной крокодил. При этом на экране должен появится «Пульс трупа». Если не появился, то покрути ручки стабилизации и смещений и уровня — возможно он просто спрятался за экран или не запустился из-за недостаточного уровня.

Как только появилась полоса, то выстави крутилками смещения её на ноль. Если у тебя аналоговый осцил, особенно если древний, то дай ему прогреться. У моего после включения ноль плавает еще минут пятнадцать.

Дальше выстави предел измерений по напряжению. Бери с запасом, если что уменьшишь. Теперь если земляной провод осциллографа приложишь к минусу батарейки, а сигнальный к плюсу, то увидишь как график скакнет на полтора вольта. Кстати, старые осциллографы зачастую начинают подвирать, поэтому по эталонному источнику напряжения полезно посмотреть насколько точно он отображает напряжение.

Выбор осциллографа.
Если ты только начал, то тебе подойдет любой. Крайне желательно если он будет двухканальным. То есть у него будет два щупа и две крутилки Усиления, для первого и второго канала, что позволяет одновременно получить два графика.
Вторым по важности критерием осциллографа является частота. Максимальная частота сигнала которую он может уловить. Мне пока хватало 1МГц на большее не замахивался. Те осциллографы, что продаются в магазинах уже имеют частоту от 10МГц и выше. Самый дешевый осциллограф который я видел стоил 5 тысяч рублей — ОСУ-10. Двухканальный стоит уже 10 тысяч, ну а я нацелился взял себе цифровой RIGOL DS1042CD за килобакс. Разные запросы — разные игрушки. Но, повторюсь, для начала хватит и 1МГц, и хватит надолго. Так что найди себе хоть какой нибудь осциллограф. А там поймешь что тебе надо.

Ремонт осциллографа С1-101

С1-101 — один из самых ма­логабаритных отече­ственных осциллографов, выпущенных во времена Советского Союза. Зало­женная элементная база с приёмкой 5 (военная приёмка) в сочетании с проду­манными техническими решениями обеспечивала ого высокую надёжность. Однако времени подвластно всё, по­этому, став недавно обладателем этого прибора, выпущенного Львовским ПО им. Ленина в 1982 г., мне пришлось начать с его тестирования и поиска неисправностей.После включения питания сигнал внутреннего калибратора на экране осциллографа оказался промодулированным частотой 100 Гц. Это сразу ука­зало на негодность конденсаторов С1 и С2 (К50-29 ёмкостью 1000 мкФ на напряжение 25 В) фильтра выпрямите­ля в блоке А7 — сетевом блоке питания с выходным напряжением 12 В. Здесь и далее позиционные обозначения бло­ков и элементов даны в соответствии с Техническим описанием (ТО) и Инст­рукцией по эксплуатации 1987 г. Эти конденсаторы отработали уже более 20 лет и были заменены одним импорт­ным ёмкостью 2200 мкФ. Затем были измерены ЭПС оксидно-полупроводни­ковых конденсаторов К53-1 и К53-14. Огорчу производителей конденсаторов К50-6 и подобных — возможность их установки в документации осциллографа не оговорена. Ну, как тут не вспом­нить С1-94?! К моему же огорчению, оказался полностью «высохшим» кон­денсатор С12 в блоке А3 (генератор развертки) и там же — конденсатор 1С7 на выходе стабилизатора напряжения 9 В имел несколько завышенное для этого типа, но допустимое ЭПС — 0.5 Ом, В принципе, факт не был неожи­данным, поскольку оба конденсатора при работе прибора испытывают им­пульсные токовые нагрузки. Первый — подзаряжается импульсами эмиттерного тока транзистора V1 (блок А3) микро­схемы А5-1 (198НТЗ) Вероятно, что по надёжности такое схемное решение детектора ждущего режима на элемен­тах VI, С12 разработчики посчитали приемлемым. Второй — блокирует импульсные провалы напряжения 9 В при работе выходного каскада высоко­частотного преобразователя, выпол­ненного на транзисторах V1 и V2 (2Т903Б). Конденсаторы были замене­ны аналогичными, причём устанавли­ваемый на место 1С7 был отобран по минимальному ЭПС (0,15 Ом) из имею­щихся в наличии.

Некоторые владельцы С1-101 жало­вались в Интернете на неожиданно появившееся существенное снижение верхней границы ПОЛОСЫ. Пропускания усилителя вертикального отклонения. Такой дефект присутствовал и в моём осциллографе. При подаче на вход “Y” импульсного сигнала с длительностью фронта 10 не на экране ЭЛТ эта дли­тельность оказалась 4 мкс вместо 70 не, заявленных в ТО. Мягко говоря, многовато. В усилительных каскадах канала нет элементов, влияющих на такой большой завал фронта сигнала. И дефект оказался во входном делителе. Защитный резистор R1 в блоке А1 с едва заметными следами подгорания имел сопротивление 82 кОм вместо номинального 56 Ом, Постоянная вре­мени интегрирующей цепи из этого подгоревшего резистора и входной ёмкости прибора (40 пф) однозначно соответствовала измеренному значе­нию времени нарастания импульсного сигнала на экране ЭЛТ. Проведённый эксперимент показал, что при перево­де переключателя S1 из «≅» положения в положение «⊥» (или наоборот) есть момент, когда секции S1.1 и S1.2 замкнуты одновременно. В результате верхний по схеме вывод резистора R1 кратковременно подключается к обще­му проводу. Наличие в этот момент на входе “Y” достаточно большого напря­жения и вызывает подгорание или появление трещин в токопроводящем слое у этого резистора.

В заключение ремонта для обес­печения заявленной верхней границы полосы пропускания прибора 5 МГц понадобилась корректировка АЧХ вход­ного делителя с помощью подстроечных конденсаторов С6, С7 по известной методике.

Смотреть техническое описание и инструкцию по эксплуатации осциллографа С1-101.

С. ГЛИБИН, г. Москва

Устройство осциллографа

Основной элемент прибора — экран, разделённый на клетки. На него выводится визуализация электрического колебания. Масштаб клеток задаётся регулировками на корпусе осциллографа. Вертикальные клетки показывают напряжение подаваемого сигнала, а горизонтальные замеряют время. Градация клеток как по напряжению, так и по времени выставляется регуляторами на корпусе. Зная время одного импульса сигнала несложно рассчитать его частоту.

Усилитель сигнала

Прибор оснащён регулятором усиления электрического сигнала. По сути, функция изменяет масштабирование синусоиды на экране. Например, по вертикали экран размечен на 10 клеток, и предел усиления установлен на 1 вольт на клетку. В этом случае импульс напряжением в двадцать вольт будет не виден на экране. Нужно установить параметр усиления на большее количество вольт, отображаемое в одной клетке. Точно так же при низком напряжении увеличением усиления добиваются отчётливой визуализации осциллограммы.

Развёртка и её регулировка

Принцип настройки осциллографа по параметру развёртки идентичен настройке усиления, только производится она по горизонтальной оси. Клетки соответствуют миллисекундам. Изменяя их количество, соответствующее одной клетке, получаем нужное отображение синусоиды в необходимом масштабе. При необходимости изучить малый отрезок сигнала, значение развёртки уменьшают. Для изучения частотности и типа электронного импульса, оценки цикличности и других характеристик значение увеличивают.

Блок синхронизации

Синусоида графика прорисовывается на экране слева направо, до его окончания. Далее, прорисовка повторяется. Скорость построения графика высока и приводит к «бегущей» прорисовке или вообще к непонятной кривой. Это происходит по причине наслоения нового изображения на старый график с однозначным смещением. Регулировкой синхронизации осуществляется включение развёртки при достижении входным сигналом установленных значений.

Например, установив значение синхронизации в ноль вольт, при обработке синусоиды сигнала отображение начнётся после достижения напряжения на входе заданного показателя, а завершится в конце экрана. Потом визуализация начнётся с очередного нулевого показателя, и цикл будет повторяться. В результате становится видна стабильная картина, и все скачки сигнала становятся наглядно видны. Простейший блок синхронизации оснащён двумя настройками:

  • Регулятор «Фронт» — позволяет установить напряжение старта. Если, допустим, установить ноль, то прорисовка начнётся, когда синусоида будет падать до значения ноль.
  • Регулятор «Спад» — При установленном на ноль регуляторе прорисовка стартует, когда синусоида будет подниматься до значения ноль снизу.

В сложных моделях осциллографов существуют ещё ряд настроек синхронизации для более специфических измерений.

Блок питания

Служит для подачи необходимого напряжения на электронные схемы самого осциллографа от сети 220 вольт.

Прибор может быть оснащён одним или несколькими сигнальными входами. Это зависит от модели. Несколько выходов необходимы для замера анализа и сравнения сразу нескольких электрических сигналов. Простейший осциллограф оснащён лишь одним сигнальным выходом и щупом заземления. Если к входу прибора ничего не подключено, то на экране посередине моделируется горизонтальная линия, называемая нулевой прямой. Если, к примеру, подключить сигнальный щуп к плюсу батарейки, а заземление к минусу, прямая линия подскочит вверх на количество клеток, соответствующее напряжению по шкале градации, выставленной на корпусе прибора. Поменяв щупы местами, линия опустится на то же количество клеток.

Виды осциллографов

Приборы разделяются на два больших вида: аналоговые, собранные по схемам с использованием электронно-лучевых трубок, и цифровые собранные с использованием жидкокристаллических дисплеев. А также существует разделение по количеству сигнальных входов. Это нужно для замера сразу нескольких показаний и их сравнения.

Аналоговые осциллографы

Это собранные по классической схеме осциллографы с применением лучевой трубки. Такие модели оснащены делителем, вертикальным усилителем, имеют синхронизацию и отклонение, и блок питания. Нижний порог измеряемой частоты 10 герц, верхний зависит установленного усилителя. В наше время аналоговые приборы вытесняются цифровыми моделями этого нужного агрегата.

Цифровые осциллографы

Эти приборы, собранные на основе микропроцессорных компонентов. Такие схемы осциллографов обладают значительно большим спектром технических возможностей. Состоят из делителя, усилителя, дешифратора аналогового сигнала в цифровой код, блока управления, памяти, а также из блока питания и ж. к. дисплея для визуализации измерений. Цифровые приборы компактны и могут быть нескольких типов:

  • Цифровые запоминающие приборы. Принцип действия несколько отличается от аналогового варианта. Входящий сигнал преобразовывается в цифровой вид и при необходимости запоминается. Скорость запоминания задаётся управляющим блоком. Оцифровка сигнала позволяет повысить стабильность отображения и запомнить информацию, сделать проще растяжение и масштабирование синусоиды. Ж. к. дисплей даёт возможность отображать дополнительные данные и управлять прибором. Существуют модели с цветным дисплеем, дающим возможность отличать сигналы от помех, шумов и других каналов, обозначать цветом интересующие места осциллограммы. Запомненные результаты измерений можно перенести в файле на компьютер или распечатать для дальнейшей обработки.
  • Цифровые люминофорные устройства. Приборы совмещают в себе все достоинства аналоговых и цифровых осциллографов, благодаря новейшей технологии построения графика сигнала на цифровом люминофоре. Это позволяет видеть на экране все нюансы модуляции сигнала, как на аналоговых типах прибора. При этом даёт возможность сохранения измерений в памяти и их анализа. А также возможно выводить графики с изменяемой интенсивностью, что очень облегчает определение неисправностей в импульсных электронных схемах и модулях. Например, становиться возможным расчёт глубины модуляции электрического сигнала при настройке напряжения на выходе импульсного блока питания, что приводит к нестабильной работе схемы или модуля. Люминофорные приборы мгновенно реагируют на изменения входного сигнала, отображают его с разной яркостью, имеют возможность сохранения и анализа измерений. Отлично совмещает в себе все преимущества цифровых и аналоговых устройств, а во многом и превосходят их.
  • Цифровые стробоскопические устройства. В таких типах приборов используется эффект последовательного стробирования сигнала. Приборы точены и чувствительны, позволяют исследовать периодические сигналы минимальной интенсивности, имеют широкую полосу пропускания. Позволяют выявлять дефекты очень сложных схем. Цена приборов очень высока, поэтому используется только профессионалами.

Портативные осциллографы

Технологии идут вперёд, стационарные цифровые приборы приобретают меньшие габариты и размеры, осциллографы не исключение. Портативные модели этих приборов имеют небольшие размеры и массу, питаются от батареек или встроенного аккумулятора. При этом не уступают стационарным устройствам по функциональности и точности, имеют большое количество функций и возможностей применения в различных областях.

Виртуальные осциллографы

Виртуальные варианты прибора являются неплохой заменой обычных цифровых осциллографов. Их преимущества в низкой стоимости, лёгкости применения, небольших размерах, хорошем быстродействии. Недостатки: невозможность замера и постоянной визуализации величины сигнала. Могут применяться в любой радиотехнической сфере. Например, для обслуживания телекоммуникационных сетей, ремонта электронной техники и компьютеризированного оборудования, при диагностике любых схем и блоков, где необходимо тестирование и анализ неустойчивых, переходных электронных процессов.

Виртуальные приборы могут быть двух типов: ·

  • Собранный в отдельном блоке аппаратный модуль, подключаемый к компьютеру через USB порт.
  • Программное приложение для компьютера, работающее при помощи звуковой карты, к линейному входу которой подключается сигнальный щуп. Визуализация сигнала происходит на мониторе П. К. или ноутбука.

При выборе модели прибора нужно обязательно представлять, какие измерения будут им производиться.

Проверка осциллографа

В инструкции по эксплуатации обязательно описан процесс калибровки (проверки) устройства. Практически любой осциллограф имеет сзади или сбоку корпуса специальный выход генератора прямоугольных импульсов. Его используют для калибровки прибора. При подключении сигнального щупа к калибровочному выходу на экране должна появиться пилообразная линия. Поставив воспроизведение луча в режим «Авто», нужно проверить работу всех функций, покрутив ручки. Яркость должна регулироваться, фокусировка — фокусировать, луч должен двигаться вверх, вниз при масштабировании. При настройке синхронизации осциллограмма должна останавливаться.

Самый же простой способ убедиться в работоспособности прибора — это коснуться пальцами щупа. Луч должен реагировать на прикосновение.

Основные функции работы и возможности осциллографа, описанные выше? наверняка помогут начинающим. Многие вопросы, возникающие в процессе использования агрегата, можно понять лишь с опытом. Прибор достаточно сложен, но изучив его, легко решаются задачи диагностики и ремонта фактически любых электронных схем.

This entry was posted in Ремонт. Bookmark the <a href="https://kabel-house.ru/remont/kak-rabotat-ostsillografom/" title="Permalink to Как работать осциллографом?" rel="bookmark">permalink</a>.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *