Источники альтернативной энергии

Содержание

Целесообразность использования гелиосистемы

Гелиосистема – комплекс для преобразования солнечной лучевой энергии в тепловую, которая в последствии передается в теплообменник для нагрева теплоносителя системы отопления или водоснабжения.

Эффективность гелиотермической установки зависит от солнечной инсоляции – количество энергии, поступающей в течение одного светового дня на 1 кв.м поверхности, расположенной под углом 90° относительно направленности солнечных лучей. Измерительная величина показателя – кВт*ч/кв.м, значение параметра меняется в зависимости от сезона.

Средний уровень солнечной инсоляции для региона умеренно-континентального климата – 1000-1200 кВт*ч/кв.м (в год). Количество солнца – определяющий параметр для расчета производительности гелиосистемы.

Использование альтернативного энергетического источника позволяет отапливать дом, получать горячую воду без традиционных энергозатрат – исключительно посредством солнечного излучения

Монтаж системы гелиотеплоснабжения – дорогое мероприятие. Чтобы капитальные расходы оправдали себя, необходим точный расчет системы и соблюдение технологии установки.

Пример. Усредненная величина солнечной инсоляции для Тулы в середине лета – 4,67 кВ/кв.м*день при условии установки панели системы под углом 50°. Производительность гелиоколлектора площадью 5 кв.м рассчитывается следующим образом: 4,67*4=18,68 кВт теплоэнергии за день. Этого объема хватит для подогрева 500 л воды с температуры от 17 °С до 45 °С.

Как показывает практика, при использовании гелиоустановки, собственники коттеджа в летний период могут полностью перейти с электрического или газового обогрева воды на солнечный метод

Говоря о целесообразности внедрения новых технологий, важно учесть технические особенности конкретного гелиоколлектора. Одни начинают работать при 80 Вт/кв.м солнечной энергии, а другим достаточно – 20 Вт/ кв.м.

Даже в южном климате, применение коллекторной системы исключительно для отопления не окупится. Если установка будет задействована исключительно зимой при дефиците солнца, то стоимость оборудования не покроется и за 15-20 лет.

Чтобы максимально эффективно использовать гелиокомплекс, его необходимо включить в систему горячего водоснабжения. Даже зимой гелиолектор позволит «урезать» счета за энергоносители на подогрев воды до 40-50%.

По оценкам экспертов, при бытовом использовании гелиосистема окупается приблизительно за 5 лет. При росте цен на электроэнергию и газ срок окупаемости комплекса сократится

Кроме экономической выгоды «солнечный обогрев» имеет дополнительные плюсы:

  1. Экологичность. Сокращается выброс углекислого газа. За год 1 кв.м гелиоколлектора предотвращает поступление в атмосферу 350-730 кг отработки.
  2. Эстетичность. Пространство компактной ванны или кухни удается избавить от громоздких бойлеров или газовых колонок.
  3. Долговечность. Производители уверяют, что при соблюдении технологии монтажа, комплекс прослужит порядка 25-30 лет. Многие компании предоставляют гарантию до 3-х лет.

Аргументы против использования энергии солнца: ярко выраженная сезонность, зависимость от погоды и высокие первоначальные инвестиции.

Общее устройство и принцип действия

Рассмотрим вариант гелиосистемы с коллектором в качестве основного рабочего элемента системы. Внешний вид агрегата напоминает металлический ящик, лицевая сторона которого изготовлена из закаленного стекла. Внутри короба размещен рабочий орган – змеевик с абсорбером.

Теплопоглощающий блок обеспечивает нагрев теплоносителя – циркулирующая жидкость, передает сгенерированное тепло в контур водоснабжения.

Основные узлы гелиосистемы: 1 – коллекторное поле, 2 – воздухоотводчик, 3 – распределительная станция, 4 – резервуар сброса избыточного давления, 5 – контролер, 6 – бак-водонагреватель, 7,8 – тэн и теплообменник, 9 – клапан термосмесительный, 10 – расход горячей воды, 11 – поступление холодной воды, 12 – слив, Т1/Т2 – температурные датчики

Гелиоколлектор обязательно работает в тандеме с аккумулирующим баком. Поскольку теплоноситель нагревается до температуры 90-130°С, его нельзя подавать непосредственно в краны горячего водоснабжения или отопительные радиаторы. Теплоноситель поступает в теплообменник бойлера. Накопительный бак часто дополняется электрическим нагревателем.

Схема работы:

  1. Солнце нагревает поверхность коллектора.
  2. Тепловое излучение передается поглощающему элементу (абсорберу), в котором содержится рабочая жидкость.
  3. Циркулирующий по трубкам змеевика теплоноситель разогревается.
  4. Насосное оборудование, блок управления и контроля обеспечивают отвод теплоносителя по трубопроводу к змеевику накопительного бака.
  5. Осуществляется передача тепла воде в бойлере.
  6. Охлажденный теплоноситель поступает обратно в коллектор и цикл повторяется.

Нагретая вода от водонагревателя подается в контур отопления или к водозаборным точкам.

При обустройстве отопительной системы или круглогодичного горячего водоснабжения, система комплектуется источником дополнительного подогрева (котел, электрический ТЭН). Это необходимое условие для поддержания заданной температуры

Разновидности солнечных коллекторов

Независимо от назначения, гелиосистема комплектуется плоским или сферическими трубчатым гелиоколлектором. Каждый из вариантов имеет ряд отличительных особенностей в плане технических характеристик и эффективности эксплуатации.

Вакуумный – для холодного и умеренного климата

Конструктивно вакуумный гелиоколлектор напоминает термос – узкие трубки с теплоносителем размещены в колбах большего диаметра. Между сосудами образуется вакуумная прослойка, отвечающая за теплоизоляцию (сохранность тепла – до 95%). Трубчатая форма наиболее оптимальна для удержания вакуума и «оккупации» солнечных лучей.

Базовые элементы трубчатой гелиотермической установки: опорная рама, корпус теплообменника, вакуумные стеклянные трубки, обработанные высокоселективным покрытием для интенсивного «поглощения» солнечной энергии

Внутренняя (тепловая) трубка наполнена солевым раствором с низкой температурой кипения (24-25 °С). При нагревании жидкость выпаривается – испарения поднимаются вверх колбы и нагревают теплоноситель, циркулирующий в корпусе коллектора.

В процессе конденсации капли воды стекают в наконечник трубки и процесс повторяется.

Благодаря наличию вакуумной прослойки жидкость внутри тепловой колбы способна закипать и испаряться при минусовой уличной температуре (до -35 °С).

Характеристики солнечных модулей зависят от таких критериев:

  • конструкция трубки – перьевая, коаксиальная;
  • устройство теплового канала – «Heat pipe», прямоточная циркуляция.

Перьевая колба – стеклянная трубка, в которой заключен пластинчатый абсорбер и тепловой канал. Вакуумная прослойка проходит через всю длину теплового канала.

Коаксиальная трубка – двойная колба с вакуумной «вставкой» между стенками двух резервуаров. Передача тепла осуществляется от внутренней поверхности трубки. Наконечник термотрубки оснащен индикатором вакуума.

Эффективность перьевых трубок (1) выше по сравнению с коаксиальными моделями (2). Однако первые дороже и сложнее в установке. Кроме того, в случае поломки, перьевую колбу придется менять целиком

Канал «Heat pipe» – наиболее распространенный вариант передачи тепла в гелиоколлекторах.

Механизм действия основан на размещении в герметичных металлических трубках легкоиспаряющейся жидкости.

Популярность «Heat pipe» обусловлена доступной стоимостью, неприхотливостью обслуживания и ремонтопригодностью. В силу сложности теплообменного процесса максимальный уровень КПД – 65%

Прямоточный канал – через стеклянную колбу проходят параллельные, соединенные в U-образную дугу металлические трубки

Теплоноситель, протекая через канал, нагревается и подается к корпусу коллектора.

Варианты конструкций вакуумного гелиоколлектора: 1 – модификация с нагревательной центральной трубкой «Heat pipe», 2 – гелиоустановка с прямоточной циркуляцией теплоносителя

Коаксиальные и перьевые трубки могут по-разному комбинироваться с тепловыми каналами.

Вариант 1. Коаксиальная колба с «Heat pipe» – наиболее популярное решение. В коллекторе происходит многократная передача тепла от стенок стеклянной трубки к внутренней колбе, а затем к теплоносителю. Степень оптического КПД достигает 65%.

Схема устройства коаксиальной трубки «Heat pipe»: 1 –оболочка из стекла, 2 – селективное покрытие, 3 – металлическое оребрение, 4 – вакуум, 5 – тепловая колба с легкозакипающим веществом, 6 – внутренняя трубка из стекла

Вариант 2. Коаксиальная колба с прямоточной циркуляцией известна как, U-образный коллектор. Благодаря конструкции уменьшаются теплопотери – тепловая энергия от алюминия передается трубкам с циркулирующим теплоносителем.

Наряду с высоким КПД (до 75%) модель имеет недостатки:

  • сложность монтажа – колбы являются единым целым с двухтрубным корпусом коллектора (mainfold) и устанавливаются целиком;
  • исключена замена одиночных трубок.

Кроме того, U-образный агрегат требователен к теплоносителю и дороже «Heat pipe» моделей.

Устройство U-образного гелиоколлектора: 1 – стеклянный «цилиндр», 2 – поглощающее покрытие, 3 – алюминиевый «чехол», 4 – колба с теплоносителем, 5 – вакуум, 6 – внутренняя трубка из стекла

Вариант 3. Перьевая трубка с принципом действия «Heat pipe». Отличительные особенности коллектора:

  • высокие оптические характеристики – КПД около 77%;
  • плоский абсорбер напрямую передает энергию тепла трубке с теплоносителем;
  • за счет использования одного слоя стекла снижено отражение солнечного излучения;

Возможна замена поврежденного элемента без слива теплоносителя из гелиосистемы.

Вариант 4. Перьевая колба прямоточного действия – наиболее эффективный инструмент использования солнечной энергии, как альтернативного источника энергии для нагрева воды или отопления жилья. Высокопроизводительный коллектор работает с КПД – 80%. Недостаток системы – трудность ремонта.

Схемы устройства перьевых солнечных коллекторов: 1 – гелиосистема с «Heat pipe» каналом, 2 – двухтрубный корпус гелиоколектора с прямоточным движением теплоносителя

Независимо от исполнения трубчатым коллекторам присущи следующие достоинства:

  • работоспособность при низкой температуре;
  • низкие тепловые потери;
  • длительность функционирования в течение суток;
  • способность разогревать теплоноситель до высоких температур;
  • невысокая парусность;
  • простота установки.

Основной недостаток вакуумных моделей – невозможность самоочищения от снежного покрова. Вакуумная прослойка не пропускает тепло наружу, поэтому слой снега не тает и перекрывает доступ солнца к коллекторному полю. Дополнительные минусы: высокая цена и необходимость соблюдения рабочего угла наклона колб не меньше 20°.

Более подробно о принципе работы вакуумного солнечного коллектора с трубками читайте .

Водяной – оптимальный вариант для южных широт

Плоский (панельный) гелиоколлектор – прямоугольная алюминиевая пластина, закрытая сверху пластиковой или стеклянной крышкой. Внутри короба расположено абсорбционное поле, металлический змеевик и слой теплоизоляции. Площадь коллектора заполнена проточным трубопроводом, по которому движется теплоноситель.

Базовые составляющие плоского гелиоколлектора: корпус, абсорбер, защитное покрытие, прослойка термоизоляции и крепежные детали. При сборке используется матовое стекло с показателем пропускания спектрального диапазона 0,4-1,8 мкм

Теплопоглощение высокоселективного абсорбирующего покрытия достигает 90%. Проточный металлический трубопровод размещен между «поглотителем» и теплоизоляцией. Применяется две схемы укладки трубок: «арфа» и «меандр».

Трубчатый коллектор с жидким теплоносителем действует, как «тепличный» эффект – солнечные лучи проникают через стекло и прогревают трубопровод. Благодаря герметичности и теплоизоляции тепло удерживается внутри панели.

Прочность солнечного модуля во многом определяется материалом защитной крышки:

  • обычное стекло – самое дешевое и хрупкое покрытие;
  • закаленное стекло – высокая степень рассеивания света и повышенная прочность;
  • антирефлексное стекло – отличается максимальной поглощающей способностью (95%) за счет наличия слоя, элиминирующего отражение лучей солнца;
  • самоочищающееся (полярное) стекло с диоксид титаном – органические загрязнения выгорают на солнце, а остатки мусора смываются дождем.

Наиболее стойко переносит удары поликарбонатное стекло. Материал устанавливается в дорогих моделях.

Отражение солнечных лучей и поглощающая способность: 1 – антирефлексное покрытие, 2 – закаленное ударопрочное стекло. Оптимальная толщина защитной внешней оболочки – 4 мм

Эксплуатационно-функциональные особенности панельных гелиоустановок:

  • в системах принудительной циркуляции предусмотрена функция оттаивания, позволяющая быстро избавиться от снежного покрова на гелиополе;
  • призматическое стекло улавливает широкий диапазон лучей под разным углом – в летний период КПД установки достигает 78-80%;
  • коллектор не боится перегрева – при переизбытке тепловой энергии возможно принудительное охлаждение теплоносителя;
  • повышенная ударопрочность по сравнению с трубчатыми собратьями;
  • возможность монтажа под любым углом;
  • доступная ценовая политика.

Системы не лишены недостатков. В период дефицита солнечного излучения, по мере увеличения разницы температур, КПД плоского гелиоколлектора значительно падает из-за недостаточной теплоизоляции. Поэтому панельный модуль оправдывает себя в летнее время или в регионах с теплым климатом.

Гелиосистемы: особенности конструкции и эксплуатации

Многообразие гелиосистем можно классифицировать по таким параметрам: метод использования солнечной радиации, способ циркуляции теплоносителя, количество контуров и сезонность эксплуатации.

Активный и пассивный комплекс

В любой солнечной системе преобразования энергии предусмотрен гелиоприемник. Исходя из способа использования полученного тепла различают два типа гелиокомплексов: пассивные и активные.

Первая разновидность – система солнечного отопления, где теплопоглощающим элементом солнечного излучения выступают конструктивные элементы здания. В качестве гелиоприемной поверхности выступают кровля, стена-коллектор или окна.

Схема низкотемпературной пассивной гелиосистемы со стеной-коллектором: 1 – лучи солнца, 2 – полупрозрачный экран, 3 – воздушный барьер, 4 – разогретый воздух, 5- отработанные воздушные потоки, 6 – тепловое излучение от стены, 7 – теплопоглощающая поверхность стены-коллектора, 8 – декоративные жалюзи

В европейских странах пассивные технологии используются при возведении энергосберегающих зданий. Гелиоприемные поверхности декорируют под фальш-окна. За стеклянным покрытием размещается кирпичная зачерненная стена со светопроемами.

В качестве теплоаккумуляторов выступают элементы сооружения – стены и перекрытия, изолированные полистиролом извне.

Активные системы подразумевают использование самостоятельных устройств, не относящихся к сооружению.

В эту категорию относятся выше рассмотренные комплексы с трубчатыми, плоскими коллекторами – гелиотермические установки, как правило, размещаются на крыше здания

Термосифонные и циркуляционные системы

Гелиотермическое оборудование с естественным движением теплоносителя по контуру коллектор-аккумулятор-коллектор осуществляется за счет конвекции – теплая жидкость с малой плотностью поднимается вверх, охлажденная – стекает вниз.

В термосифонных системах накопительный бак размещается выше коллектора, обеспечивая самопроизвольную циркуляцию теплоносителя.

Схема работы свойственна одноконтурным сезонным системам. Термосифонный комплекс не рекомендуется использовать для коллекторов, площадью более 12 кв.м

Безнапорная гелиосистема имеет широкий перечень недостатков:

  • в облачные дни производительность комплекса падает – для движения теплоносителя требуется большая разница температур;
  • тепловые потери, обусловленные медленным передвижением жидкости;
  • риск перегрева бака ввиду неуправляемости нагревательного процесса;
  • нестабильность работы коллектора;
  • сложность размещения бака-аккумулятора – при монтаже на крыше возрастают теплопотери, ускоряются коррозийные процессы, появляется риск замерзания патрубков.

Плюсы «гравитационной» системы: простота конструкции и ценовая доступность.

Капитальные затраты на обустройство циркуляционной (принудительной) гелиосистемы значительно выше установки безнапорного комплекса. В контур «врезается» насос, обеспечивающий движения теплоносителя. Работа насосной станции управляется контролером.

Дополнительная тепловая мощность, вырабатываемая в принудительном комплексе, превышает мощность, потребляемую насосным оборудованием. Эффективность системы возрастет на треть

Такой способ циркуляции задействован в круглогодичных двухконтурных гелиотермических установках.

Плюсы полнофункционального комплекса:

  • неограниченный выбор месторасположения аккумулирующего бака;
  • работоспособность вне сезона;
  • выбор оптимального режима нагрева;
  • безопасность – блокировка работы при перегреве.

Недостаток системы – зависимость от электроэнергии.

Техническое решение схем: одно – и двухконтурные

В одноконтурных установках циркулирует жидкость, которая впоследствии подается к водозаборным точкам. В зимний период воду с системы надо сливать, чтоб предупредить замерзание и растрескивание труб.

Особенности одноконтурных гелиотермических комплексов:

  • рекомендована «заправка» системы очищенной нежесткой водой – оседание солей на стенках труб приводит к засорению каналов и поломке коллектора;
  • коррозия из-за избытка воздуха в воде;
  • ограниченный срок службы – в пределах четырех-пяти лет;
  • высокий КПД летом.

В двухконтурных гелиокомплексах циркулирует специальный теплоноситель (незамерзающая жидкость с противовспенивающими и антикоррозийными добавками), отдающий тепло воде через теплообменник.

Схемы устройства одноконтурной (1) и двухконтурной (2) гелиосистемы. Второй вариант отличается повышенной надежностью, возможностью работы зимой и длительностью эксплуатации (20-50 лет)

Нюансы эксплуатации двухконтурного модуля: незначительное снижение КПД (на 3-5% меньше чем в одноконтурной системе), необходимость полной замены теплоносителя каждые 7 лет.

Условия для работы и повышения эффективности

Расчет и монтаж гелиосистемы лучше доверить профессионалам. Соблюдение техники установки обеспечит работоспособность и получение заявленной производительности. Для улучшения эффективности и периода службы надо учесть некоторые нюансы.

Термостатический клапан. В традиционных системах теплоснабжения термостатический элемент редко устанавливается, так как за регулировку температуры отвечает теплогенератор. Однако при обустройстве гелиосистемы о защитном клапане забывать нельзя.

Нагрев бака до максимальной допустимой температуры повышает производительность коллектора и позволяет задействовать солнечное тепло даже при пасмурной погоде

Оптимальное размещение клапана – 60 см от нагревателя. При близком расположении «термостат» нагревается и блокирует подачу горячей воды.

Размещение бака-аккумулятора. Буферная емкость ГВС должна устанавливаться в доступном месте. При размещении в компактном помещении особое внимание уделяется высоте потолков.

Минимальное свободное пространство над баком – 60 см. Этот зазор необходим для обслуживания аккумулятора и замены магниевого анода

Установка расширительного бака. Элемент компенсирует температурное расширение в период стагнации. Установка бака выше насосного оборудования спровоцирует перегрев мембраны и ее преждевременный износ.

Оптимальное место для расширительного бачка – под насосной группой. Температурное воздействие при таком монтаже значительно сокращается, и мембрана дольше сохраняет эластичность

Подсоединение гелиоконтура. При подключении труб рекомендуется организовать петлю. «Термопетля» сокращает теплопотери, препятствуя выходу разогретой жидкости.

Технически правильный вариант реализации «петли» гелиоконтура. Пренебрежение требованием становится причиной понижения температуры в баке-аккумуляторе на 1-2°С за ночь

Обратный клапан. Предупреждает «опрокидывание» циркуляции теплоносителя. При недостатке солнечной активности обратный клапан не дает рассеиваться теплу, накопленному днем.

Популярные модели «солнечных» модулей

Спросом пользуются гелиосистемы отечественных и зарубежных компаний. Хорошую репутацию завоевали изделия производителей: НПО Машиностроения (Россия), Гелион (Россия), Ariston (Италия), Альтен (Украина), Viessman (Германия), Amcor (Израиль) и др.

Гелиосистема «Сокол». Плоский гелиоколлектор, оснащенный многослойным оптическим покрытием с магнитронным напылением. Минимальная способность излучения и высокий уровень поглощения обеспечивают КПД до 80%.

Эксплуатационные характеристики:

  • рабочая температура – до -21 °С;
  • обратное излучение тепла – 3-5%;
  • верхний слой – закаленное стекло (4 мм).

Коллектор СВК-А (Альтен). Вакуумная гелиоустановка с площадью абсорбции 0,8-2,41 кв.м (зависимо от модели). Теплоноситель – пропиленгликоль, теплоизоляция медного теплообменника в 75 мм минимизирует теплопотери.

Дополнительные параметры:

  • корпус – анодированный алюминий;
  • диаметр теплообменника – 38 мм;
  • изоляция – минвата с антигигроскопичной обработкой;
  • покрытие – боросиликатное стекло 3,3 мм;
  • КПД – 98%.

Vitosol 100-F – плоский гелиоколлектор горизонтального или вертикального монтажа. Медный абсорбер с арфообразным трубчатым змеевиком и гелиотитановым покрытием. Пропускание света – 81%.

Ориентировочный порядок цен на гелиосистемы: плоские гелиоколлекторы – от 400 у.е./кв.м, трубчатые солнечные коллекторы – 350 у.е./10 вакуумных колб. Полный комплект циркуляционной системы – от 2500 у.е.

Реферат «Энергия Солнца как альтернативный источник тепловой и электрической энергии»

Актуальность темы заключается в том, что остро стоит экологический вопрос – активная добыча ресурсов и их дальнейшее использование пагубно сказывается на состоянии планеты, изменяя не только природу почв, но даже климатические условия.

Именно поэтому особенное внимание всегда уделялось естественным источникам энергии, таким, к примеру, как вода или ветер. Наконец, спустя столько лет активных исследований и разработок человечество «доросло» до использования энергии Солнца на Земле. Именно о нём и пойдёт далее речь.

Предварительный просмотр:

муниципальное бюджетное общеобразовательное учреждение

«Школа № 60 имени пятого гвардейского Донского казачьего кавалерийского Краснознаменного Будапештского корпуса»

как альтернативный источник тепловой и электрической энергии»

ученица 4 класса «В»

Пушкарская Екатерина Учитель:

Храмцова Елена Анатольевна

  1. Энергия Солнца на Земле. Развитие энергетики ……………………….7
  1. Первые опыты использования солнечной энергии……………………7
  2. Фотоэлементы и коллекторы – преобразователи энергии Солнца……8
  3. Сфера применения энергии Солнца в современном мире……………..9
  4. Преимущества и недостатки использования солнечной энергии…….10
  5. Электроэнергия из космоса – будущее энергетики……………………11
  1. Изготовление и использование солнечной печи………………………12

«Реактивные приборы завоюют людям беспредельные пространства и дадут солнечную энергию, в два миллиарда раз большую, чем та, которую человечество имеет на Земле».

На сегодняшний день проблема расхода энергии стоит достаточно остро – ресурсы планеты не бесконечны и за время своего существования человечество изрядно опустошило то, что было дано природой. На данный момент активно проводится добыча угля и нефти, запасы, которых с каждым днем становятся всё меньше.

Сила мысли позволила человечеству сделать невероятный шаг в будущее и использовать атомную энергию, привнеся вместе с этим благом огромную опасность для всей окружающей среды.

Актуальность темы заключается в том, что остро стоит экологический вопрос – активная добыча ресурсов и их дальнейшее использование пагубно сказывается на состоянии планеты, изменяя не только природу почв, но даже климатические условия.

Именно поэтому особенное внимание всегда уделялось естественным источникам энергии, таким, к примеру, как вода или ветер. Наконец, спустя столько лет активных исследований и разработок человечество «доросло» до использования энергии Солнца на Земле. Именно о нём и пойдёт далее речь.

Использование энергии солнца на земле играет важную роль в жизни человека. При помощи своего тепла солнце, как источник энергии, нагревает всю поверхность нашей планеты. Благодаря его тепловой мощности дуют ветра, нагреваются моря, реки, озера, существует все живое на земле.

Возобновляемые источники тепла люди начали использовать ещё много лет назад, когда современных технологий ещё не существовало. Солнце является самым доступным на сегодняшний день поставщиком тепловой энергии на земле.

Цель проекта : изучить использование солнечной энергии как альтернативный источник тепловой и электрической энергии.

Задачи: изучить литературу на заданную тему; построить солнечную печку; применить на практике энергию солнца.

  1. Энергия Солнца на Земле. Рождение энергетики

Энергия солнца – это всего лишь поток фотонов. И вместе с тем это – один из основополагающих факторов, обеспечивающих само существование жизни в нашей биосфере. Поэтому вполне естественно, что солнечный свет активно используется человеком не только в климатическом аспекте, но и в качестве альтернативного источника энергии.

С момента появления на земле человек начал использовать энергию солнца. По археологическим данным известно, что для жилья предпочтение отдавали тихим, закрытым от холодных ветров и открытых солнечным лучам местам. Вокруг светила создавались мифы, его обожествляли.

В Древнем Египте верховным божеством считался Ра бог Солнца. Пожалуй, первой известной гелиосистемой можно считать статую Аменхотепа III, относящуюся к XV веку до н.э. Внутри статуи располагалась система воздушных и водяных камер, которые под солнечными лучами приводили в движение спрятанный музыкальный инструмент.

В Древней Греции поклонялись Гелиосу. Имя этого бога сегодня легло в основу многих терминов, связанных с солнечной энергетикой.

У древних славян особо почитался Даждьбог солнце, источник тепла и света. У древних инков были загадочные сооружения, по которым сегодня мы можем предложить версию, что они могли использоваться как гелиоколлекторы. Солярная символика являлась оберегом для человека и его жилища. Такие изображения и сегодня можно встретить в орнаментах традиционного жилища.

Понятные нам теперь солнечные затмения в древности воспринимались простыми людьми как катастрофы. Вокруг этого явления складывались легенды. Появление огня, поддерживающего свою жизнь древесиной и согревающего человека, не изменило такую привязанность.

А что такое древесина? Это практически та же солнечная энергия, аккумулированная с помощью фотосинтеза. А газ, уголь, нефть? Это также результат деятельности солнца. Ветер был менее почитаем, но и у него в глубокой древности также есть олицетворения в виде богов, духов. Так у славян почитали Стрибога бога и повелителя ветра. Олицетворения ветра существуют и в других языческих культах. Из глубины веков до нас дошли сведения, как ветер ловили парусами и путешествовали по морям и рекам. Тысячи ветряных мельниц вплоть до начала XX века трудились, перемалывая зерно в муку. Сервантес в своей книге о Дон Кихоте в одной из наиболее ярких картин представил мельницы могучими великанами, с которыми борется рыцарь «печального образа».

Как видно, такие природные и поистине бесценные источники, как солнечная радиация и энергия ветра, были всегда рядом с человеком, их старались использовать, приручить стихию. С незапамятных времён пространственную структуру своего жилья человек организовывал с учётом ориентации на Солнце. Фактически то, что мы сейчас называем энергосберегающими строительными приёмами, есть ничто иное, как попытка грамотного использования и сохранения тепла, дающего нашим светилом, в зданиях.

Уже древнейшие люди думали, что вся жизнь на Земле порождена и неразрывно связана с Солнцем. В религиях самых разных населяющих Землю народов, одним из самых главных богов всегда был бог Солнца, дарующий животворящее тепло всему сущему.

Действительно, количество энергии, поступающей на Землю от ближайшей к нам звезды, огромно. Всего за три дня Солнце посылает Земле столько энергии, сколько содержится её во всех разведанных нами запасах топлива! И хотя только третья часть этой энергии достигает Земли — остальные две трети отражаются или рассеиваются атмосферой, — даже эта её часть более чем в полторы тысячи раз превосходит все остальные, используемые человеком источники энергии, вместе взятые! Да и вообще все источники энергии, имеющиеся на Земле, порождены Солнцем.

В конечном счёте именно солнечной энергии человек обязан всеми своими техническими достижениями. Благодаря солнцу возникает круговорот воды в природе, образуются потоки воды, вращающей водяные колеса. По-разному нагревая землю в различных точках нашей планеты, солнце вызывает движение воздуха, тот самый ветер, который наполняет паруса судов и вращает лопасти ветряных установок. Всё ископаемое топливо, используемое в современной энергетике, ведёт свое происхождение опять же от солнечных лучей. Это их энергию с помощью фотосинтеза преобразовали растения в зелёную массу, которая в результате длительных процессов превратилась в нефть, газ, уголь.

Нельзя ли использовать энергию солнца непосредственно? На первый взгляд это не такая уж сложная задача. Кто не пробовал в солнечный день при помощи обыкновенной лупы выжигать на деревянной дощечке картинку! Минута, другая — и на поверхности дерева в том месте, где лупа собрала солнечные лучи, появляется чёрная точка и легкий дымок. Именно таким образом один из самых любимых героев Жюля Верна, инженер Сайрус Смит, выручил своих друзей, когда у них, попавших на таинственный остров, погас костёр. Инженер сделал линзу из двух часовых стёкол, пространство между которыми было заполнено водой. Самодельная «чечевица» сосредоточила солнечные лучи на охапке сухого мха и воспламенила его.

Этот сравнительно нехитрый способ получения высокой температуры люди знали с глубокой древности. В развалинах древней столицы Ниневии в Месопотамии нашли примитивные линзы, сделанные еще в XII веке до нашей эры. Только «чистым» огнём, полученным непосредственно от лучей Солнца, полагалось зажигать священный огонь в древнеримском храме Весты.

Интересно, что древними инженерами подсказана и другая идея концентрации солнечных лучей — с помощью зеркал. Великий Архимед оставил нам трактат «О зажигательных зеркалах». С его именем связана поэтическая легенда, рассказанная византийским поэтом Цецесом.

Во время Пунических войн родной город Архимеда Сиракузы был осаждён римскими кораблями. Командующий флотом Марцелл не сомневался в лёгкой победе — ведь его войско было намного сильнее защитников города. Одного не учёл заносчивый флотоводец — в борьбу с римлянами вступил великий инженер. Он придумал грозные боевые машины, построил метательные орудия, которые осыпали римские корабли градом камней или увесистой балкой пробивали дно. Другие машины крючковатым краном поднимали суда за нос и разбивали их о прибрежные скалы. А однажды римляне с изумлением увидели, что место воинов на стене осаждённого города заняли женщины с зеркалами в руках. По команде Архимеда они направили солнечные зайчики на одно судно, в одну точку. Через короткое время на судне вспыхнул пожар. Та же участь постигла ещё несколько кораблей нападавших, пока они в растерянности не бежали подальше, за пределы досягаемости грозного оружия.

Долгие века эта история считалась красивым вымыслом. Однако некоторые современные исследователи истории техники провели расчёты, из которых следует, что зажигательные зеркала Архимеда в принципе могли существовать.

Использовали наши предки солнечную энергию и в более прозаических целях. В Древней Греции и в Древнем Риме основной массив лесов был хищнически вырублен для строительства зданий и судов. Дрова для отопления почти не использовались. Для обогрева жилых домов и оранжерей активно использовалась солнечная энергия. Архитекторы старались строить дома так, чтобы в зимнее время на них падало бы как можно больше солнечных лучей. Древнегреческий драматург Эсхил писал, что цивилизованные народы тем и отличаются от варваров, что их дома «обращены лицом к солнцу». Римский писатель Плиний Младший указывал, что его дом, расположенный севернее Рима, «собирал и увеличивал тепло Солнца за счёт того, что его окна располагались так, чтобы улавливать лучи низкого зимнего солнца».

Раскопки древнего греческого города Олинфа показали, что весь город и его дома были спроектированы по единому плану и располагались так, чтобы зимой можно было поймать как можно больше солнечных лучей, а летом, наоборот, избегать их. Жилые комнаты обязательно располагались окнами к Солнцу, а сами дома имели два этажа: один — для лета, другой — для зимы. В Олинфе, как и позже в Древнем Риме, запрещалось ставить дома так, чтобы они заслоняли от Солнца дома соседей, — урок этики для сегодняшних создателей небоскребов!

  1. Энергия Солнца на Земле. Развитие энергетики

Если мыслить максимально широко, попытки «приручить» великое светило, согревающее нашу планету, начались ещё в глубокой древности во времена язычества, когда каждая стихия была воплощена отдельным божеством. Однако, конечно, тогда об использовании солнечной энергии даже речи быть не могло – в мире царила магия.

Тема использования энергии Солнца на Земле стала активно подниматься только в конце XIV – начале ХХ веков.

2.1 Первые опыты использования солнечной энергии

В 1600 г. во Франции был создан первый солнечный двигатель, работавший на нагретом воздухе и использовавшийся для перекачки воды.

В конце XVII века ведущий французский химик А. Лавуазье создал первую солнечную печь, в которой достигалась температура в 1650 о С и нагревались образцы исследуемых материалов в вакууме и защитной атмосфере, а также были изучены свойства углерода и платины.

В 1866 г. француз А. Мушо построил в Алжире несколько крупных солнечных концентраторов и использовал их для дистилляции воды и приводов насосов. На всемирной выставке в Париже в 1878 г. А. Мушо продемонстрировал солнечную печь для приготовления пищи, в которой 0,5 кг мяса можно было сварить за 20 минут.

В 1833 г. в США Дж. Эриксон построил солнечный воздушный двигатель с параболоцилиндрическим концентратором размером 4,8* 3,3 м.

Первый плоский коллектор солнечной энергии был построен французом Ш.А. Тельером. Он имел площадь 20 м 2 и использовался в тепловом двигателе, работавшем на аммиаке. В 1885г. была предложена схема солнечной установки с плоским коллектором для подачи воды, причем он был смонтирован на крыше пристройки к дому.

Первая крупномасштабная установка для дистилляции воды была построена в Чили в 1871 г. американским инженером Ч. Уилсоном. Она эксплуатировалась в течение 30 лет, поставляя питьевую воду для рудника.

В 1890 г. профессор В.К. Церасский в Москве осуществил процесс плавления металлов солнечной энергией, сфокусированной параболоидным зеркалом, в фокусе которого температура превышала 3000 о С.

Впервые на практическую возможность использования людьми огромной энергии Солнца указал основоположник теоретической космонавтики К.Э. Циолковский в 1912 году во второй части своей книги: «Исследования мировых пространств реактивными приборами». Он писал: «Реактивные приборы завоюют людям беспредельные пространства и дадут солнечную энергию, в два миллиарда раз большую, чем та, которую человечество имеет на Земле».

2.2 Фотоэлементы и коллекторы – преобразователи энергии Солнца

Весомый вклад в развитие солнечной энергетики внёс в свое время сам Альберт Эйнштейн. В современном мире имя учёного чаще связывают с его знаменитой теорией относительности, однако на самом деле Нобелевской премии он был удостоен именно за изучение внешнего фотоэффекта.

Полученные знания применяются в полном объёме при разработке и производстве приборов на основе фотоэлементов.

Фотоэнергия – это один из двух способов использования излучения солнца. Это постоянный ток, вырабатываемый под действием солнечных лучей. Происходит такое преобразование в так называемых фотоячейках, которые, по сути, представляют собой двухслойную структуру из двух полупроводников разного типа. Такие фотоэлементы еще называют — солнечные элементы. На своей поверхности они имеют полупроводники, которые, при воздействии на них лучей солнца, начинают двигаться, и тем самым вырабатывают электроток. Такой принцип выработки тока не содержит никаких химических реакций, что позволяет фотоэлементам работать достаточно долго.

Такие фотоэлектрические преобразователи как источники энергии Солнца легко использовать, так как они имеют небольшой вес, просты в обслуживании, а также являются очень эффективными в использовании солнечной мощности.

На сегодняшний день солнечные коллекторы, как источник энергии солнца на земле, используют для выработки горячего водоснабжения, отопления и для производства электричества в теплых странах, таких как Турция, Египет и страны Азии. В нашем регионе солнце как источник энергии применяют для снабжения электричеством автономных систем электропитания, маломощной электроники и приводов самолетов.

Использование солнечной энергии коллекторами заключается в том, что они преобразовывают радиацию в тепло. Их разделяют на основные группы.

Плоские солнечные коллекторы. Являются самыми распространенными. Их удобно использовать для бытовых отопительных нужд, а также при подогреве воды для горячего водоснабжения.

Вакуумные коллекторы. Их используют для бытовых нужд, когда необходима вода высокой температуры. Они состоят из нескольких стеклянных трубок, проходя через которые лучи солнца нагревают их, а они, в свою очередь, отдают тепло воде.

Воздушные солнечные коллекторы. Их используют для воздушного отопления, рекуперации воздушных масс и для осушительных установок.

Интегрированные коллекторы. Самые простые модели. Их используют для предварительного подогрева воды, например, для газовых котлов.

В быту подогретая вода собирается в специальном баке — накопителе и далее используется для различных нужд.

Использование энергии Солнца коллекторами осуществляется путём накапливания её в так называемых модулях. Они устанавливаются на крыше зданий и состоят из стеклянных трубок и пластин, которые, в целях поглощения большего объёма солнечного света, окрашивают в чёрный цвет.

  1. Сфера применения энергии Солнца в современном мире

Солнечная радиация – это неисчерпаемый возобновляемый источник экологически чистой энергии. Солнечная энергия может быть преобразована в тепловую, механическую и электрическую энергию, использована в химических и биологических процессах.

Сфера применения энергии солнца очень обширна, и с каждым годом она становится всё больше. Так, еще совсем недавно дачный душ с солнечным нагревателем воспринимался как нечто необыкновенное, а возможность использования солнечного света для домашних электросетей и вовсе казалась фантастикой. Сегодня же никого не удивишь не только автономной гелиостанцией, но и мобильными зарядками на солнечных батареях и даже мелкой техникой (например, часами), работающей на фотогальваническом эффекте.

Вообще же использование солнечной энергии очень востребовано в таких областях, как: сельское хозяйство; энергоснабжение санаториев и пансионатов; космическая отрасль; природоохранная деятельность и экотуризм; электрификация отдалённых и сложно доступных регионов; уличное, садовое и декоративное освещение; сфера ЖКХ (ГВС, придомовое освещение); мобильная техника (гаджеты и зарядные модули на солнечных батареях).

Гелиоэнергетика активно применяется не только для частных домов, но и для городских строений. Как человек использует солнечную энергию в мегаполисах, догадаться несложно. Она также применяется для обогрева и ГВС зданий, причём нередко – целых кварталов.

В последние годы активно развиваются и воплощаются концепции экодомов, полностью работающих на альтернативных источниках энергии. В них используются комбинированные системы, обеспечивающие эффективное получение солнечной, ветровой и тепловой энергии земли. Нередко такие дома не только целиком покрывают свои энергетические нужды, но и передают излишки в городские сети. Причём совсем недавно проекты таких эко – зданий появились и в России.

  1. Преимущества и недостатки использования солнечной энергии

Чем же так сильно заинтересовал этот вид добычи энергии исследователей всего мира. Основным его достоянием можно назвать неисчерпаемость. Несмотря на многочисленные гипотезы, вероятность того, что звезда вроде Солнца погаснет в ближайшее время, крайне мала. Значит, перед человечеством открыта возможность получать чистую энергию совершенно естественным путём.

Второе несомненное преимущество использования энергии Солнца на Земле заключается в экологичности этого варианта. Воздействие на окружающую среду при таких условиях будет нулевым, что в свою очередь обеспечивает всему миру куда более светлое будущее, нежели то, которое открывается при постоянной добыче ограниченных подземных ресурсов.

Солнечная энергия – это один из самых доступных и общераспространенных возобновляемых источников энергии. Она образуется естественным путём, без участия человека, а значит, абсолютно бесплатна. Кроме того, солнечное излучение безопасно в использовании и не оказывает никакого вредного воздействия на экологию. А возможности его применения (как и потенциал) практически безграничны.

Солнечные установки имеют полную безопасность в использовании,

они автономны, экономичны, так как расход средств осуществляется только лишь на приобретение оборудования для установок, их использование гарантирует отсутствие скачков напряжения, а также стабильность в электроснабжении, они долговечны, просты в использовании и в обслуживании.

Использование солнечной энергии при помощи таких установок с каждым годом набирает популярности. Солнечные батареи дают возможность сэкономить не малые деньги на отоплении и горячем водоснабжении, к тому же они являются экологически чистыми и не наносят урон здоровью человека.

К недостаткам можно отнести зависимость от погоды и времени суток. Сезонность в средних широтах и несовпадение периодов выработки энергии и потребности в энергии. Нерентабельность в высоких широтах. Как следствие, необходимость аккумуляции энергии. При промышленном производстве — необходимость дублирования солнечных ЭС маневренными ЭС сопоставимой мощности. Высокая стоимость конструкции, связанная с применением редких элементов (к примеру, индий и теллур). Необходимость периодической очистки отражающей/поглощающей поверхности от загрязнения. Нагрев атмосферы над электростанцией.

  1. Электроэнергия из космоса – будущее энергетики

Идея сооружения Международной опытной космической электростанции (КСЭС), подающей электроэнергию земным потребителям, возникла в 1960 году и не сходит с тех пор со страниц популярных и научных изданий.

КСЭС в совокупности с промежуточными атмосферными сооружениями сможет на только подавать электроэнергию земным потребителям, но и непосредственно освещать большие участки земной поверхности ночью и затенять их днём, регулировать климатические условия, уничтожать тайфуны и смерчи, снабжать энергией космические корабли, воздушные средства, наземный транспорт, удаленные от линий электропередачи промышленные предприятия и т.д.

Целесообразность создания КСЭС диктуется неисчерпаемостью солнечной энергии, экологическими соображениями и необходимостью сохранять ныне широко применяемые природные энергоносители (нефть, газ, уголь).

КСЭС с периодически сменяемым персоналом могла бы стать на только прообразом сверхмощных станций будущего, но и одновременно выполнять огромное количество обычной “космической работы” (исследования, наблюдения, эксперименты). Потребность в такой опытной КСЭС имеется уже сейчас, причём не только потребность, но и возможность её создания при условии международного сотрудничества.

При этом следует учесть, что наша страна первой в мире освоила пилотируемые космические полеты с пребыванием людей на станции в течение одного года, у нас создан и опробован в космосе уникальный монтажный инструмент, а космонавтами получен уникальный опыт работы по развертыванию крупногабаритных космических сооружений, в том числе и дополнительных панелей солнечных батарей, освоены длительные рабочие выходы космонавтов в открытый космос, успешно проведены первые испытания новой универсальной ракеты-носителя «Энергия».

3. Изготовление и использование солнечной печи

Итак, обладая таким мощным источником энергии, как Солнце, я решила проверить его эффективность, я решила изготовить солнечную печь и приготовить на ней еду.

Многие развивающиеся страны, уже не одну сотню лет варят каши без огня: первая известная солнечная печь была сделана швейцарцем по имени Хорас де Соссьюр еще в 1767 году (около 250 лет назад)!

То есть можно приготовить пищу, не сжигая топлива и без электрической энергии, а используя только солнечное излучение.

Для этого нужно сконцентрировать лучи солнца, т.е. собрать их все вместе в одну точку, усилив тем самым их действие во много раз. Эту задачу выполняют так называемые оптические концентраторы, которые представляют из себя вогнутую зеркальную поверхность.

Вот такую солнечную печку продают в магазине.

Моя печь является наиболее простой по конструкции, и представляет собой зеркало-концентратор, состоящее из нескольких плоских отражающих поверхностей из фольги и миски, которая теплоизолирована от окружающего воздуха обычным полиэтиленовым пакетом.

Для изготовления солнечной печи мне понадобились: картонная коробка, фольга, ножницы, клей, тёмная миска, скотч, полиэтиленовый пакет для теплоизоляции.

Из картона я сделала вот такую конструкцию. Обклеила её фольгой. Налила в миску тёмного цвета воды и вынесла свою печь на улицу под палящие лучи солнца, установив миску на печи таким образом, чтобы лучи, отражающие от стен печи, попадали на миску, миску предварительно поместила в полиэтиленовый пакет, чтобы тепло не покидало миску.

Примерно через 1 час 15 мин вода в миске нагрелась до высокой температуры (до кипения мне её довести не удалось), я положила в миску с водой гречневую крупу и продолжила эксперимент. Прошёл ещё час, и каша из гречневой крупы была готова.

Мой эксперимент удался, не применяя электроэнергии, газа или какого-нибудь другого топлива, мне удалось приготовить пищу, используя только энергию солнца, хотя и времени у меня ушло чуть более двух часов, результатом своего эксперимента я была довольна.

До наших дней технология использования энергии Солнца на Земле переживала то стремительные взлеты, то не менее стремительные падения, однако эта отрасль знаний постоянно пополняется новыми фактами, и можно надеяться, что уже в обозримом будущем перед нами откроется дверь в совершенно новый мир.

В Древнем Египте верховным божеством считался Ра бог Солнца.

У древних инков были загадочные сооружения, по которым сегодня мы можем предложить версию, что они могли использоваться как гелиоколлекторы.

Внутри статуи располагалась система воздушных и водяных камер, которые под солнечными лучами приводили в движение спрятанный музыкальный инструмент.

В Древней Греции поклонялись Гелиосу. Имя этого бога сегодня легло в основу многих терминов, связанных с солнечной энергетикой.

Использование солнечной энергии коллекторами заключается в том, что они преобразовывают радиацию в тепло. Их разделяют на следующие основные группы: плоские солнечные коллекторы, вакуумные коллекторы, воздушные солнечные коллекторы, интегрированные коллекторы.

В конце XVII в. ведущий французский химик А. Лавуазье создал первую солнечную печь, в которой достигалась температура в 1650 о С и нагревались образцы исследуемых материалов в вакууме и защитной атмосфере.

Такие фотоэлементы еще называют — солнечные элементы. На своей поверхности они имеют полупроводники, которые, при воздействии на них лучей солнца, начинают двигаться, и тем самым вырабатывают электроток. Такой принцип выработки тока не содержит никаких химических реакций, что позволяет фотоэлементам работать достаточно долго.

Для изготовления солнечной печи мне понадобились: картонная коробка, фольга, ножницы, клей, тёмная миска, скотч, полиэтиленовый пакет для теплоизоляции.

Реферат «Энергия Солнца как альтернативный источник тепловой и электрической энергии», Социальная сеть работников образования
Актуальность темы заключается в  том, что остро стоит экологический вопрос  – активная добыча ресурсов и их дальнейшее использование пагубно сказывается на состоянии планеты, изменяя не толь

Популярные источники возобновляемой энергии

“Зеленые технологии” позволят ощутимо сократить бытовые расходы за счет использования практически бесплатных источников.

Еще с древних времен люди использовали в повседневном обиходе механизмы и устройства, действие которых было направлено на превращение в механическую энергию сил природы. Ярким примером тому являются водяные мельницы и ветряки.

С появлением электричества наличие генератора позволило механическую энергию превращать в электрическую.

Водяная мельница – предшественник насоса автомата, не требующий присутствия человека для совершения работы. Колесо самопроизвольно вращается под напором воды и самостоятельно черпает воду

Сегодня значительное количество энергии вырабатывается именно ветряными комплексами и гидроэлектростанциями. Помимо ветра и воды людям доступны такие источники, как биотопливо, энергия земных недр, солнечный свет, энергия гейзеров и вулканов, сила приливов и отливов.

В быту для получения возобновляемой энергии широко используют следующие устройства:

  • Солнечные батареи.
  • Тепловые насосы.
  • Ветрогенераторы для дома.

Высокая стоимость, как самих устройств, так и проведения монтажных работ, останавливает многих людей на пути к получению вроде бы бесплатной энергии.

Окупаемость может достигать 15-20 лет, но это не повод лишать себя экономических перспектив. Все эти устройства можно изготовить и установить самостоятельно.

При выборе источника альтернативной энергии нужно ориентироваться на ее доступность, тогда максимальная мощность будет достигнута при минимуме вложений

Солнечные панели собственноручного изготовления

Готовая солнечная панель стоит немалых денег, поэтому ее покупка и установка по карману далеко не каждому. При самостоятельном изготовлении панели расходы можно снизить в 3-4 раза.

Прежде чем приступить к устройству солнечной панели нужно разобраться, как все это работает.

Галерея изображений Фото изРасположение солнечной панели на скатной крышеМонтаж солнечных батарей на пологую крышуКонструкция для изменения угла наклона приборовФормирование угла наклона солнечной батареи

Принцип работы системы солнечного электроснабжения

Понимание назначения каждого из элементов системы позволит представить ее работу в целом.

Основные составляющие любой системы солнечного электроснабжения:

  • Солнечная панель. Это комплекс соединенных в единое целое элементов, преобразующих солнечный свет в поток электронов.
  • Аккумуляторы. Одной аккумуляторной батареинадолго не хватит, поэтому система может насчитывать до десятка таких устройств. Количество аккумуляторных батарей определяется мощностью потребляемой электроэнергии. Количество аккумуляторных батарей можно будет увеличить в будущем, добавив в систему необходимое количество солнечных панелей;
  • Контроллер солнечного заряда. Это устройство необходимо для обеспечения нормальной зарядки аккумуляторной батареи. Основное его назначение состоит в недопущении повторной перезарядки батареи.
  • Инвертор. Прибор, требующийся для преобразования тока. Аккумуляторные батареи выдают ток низкого напряжения, а инвертор преобразует его в ток необходимого для функционала высокого напряжения – выходная мощность. Для дома достаточно будет инвертора с выдаваемой мощностью 3-5 кВт.

Основная особенность солнечных батарей состоит в том, что они не могут вырабатывать ток высокого напряжения. Отдельный элемент системы способен вырабатывать ток напряжением 0,5-0,55 В. Одна солнечная батарея способна вырабатывать ток напряжением 18-21 В, чего достаточно для зарядки 12-вольтового аккумулятора.

Если инвертор, аккумуляторные батареи и контроллер заряда лучше приобрести готовыми, то солнечные батареи вполне возможно сделать самому.

Качественный контроллер и правильность подключения помогут как можно дольше сохранять работоспособность аккумуляторных батарей и автономность всей солнечной станции в целом

Изготовление солнечной батареи

Для изготовления батареи необходимо приобрести солнечные фотоэлементы на моно- либо поликристаллах. При этом нужно учесть, что срок службы поликристаллов значительно меньше, чем у монокристаллов.

Кроме того КПД поликристаллов не превышает 12%, тогда как этот показатель у монокристаллов достигает 25%. Для того, чтобы сделать одну солнечную панель необходимо купить как минимум 36 таких элементов.

Солнечную батарею собирают из модулей. Каждый модуль для бытового использования включает 30, 36 или 72 шт. элементов, соединенных последовательно с источником питания с максимальным напряжением около 50 V

Шаг #1 – сборка корпуса солнечной панели

Начинаются работы с изготовления корпуса, для этого потребуются следующие материалы:

  • Деревянные бруски
  • Фанера
  • Оргстекло
  • ДВП

Из фанеры необходимо вырезать днище корпуса и вставить его в рамку из брусков толщиной 25 мм. Размер днища определяется количеством солнечных фотоэлементов и их размером.

По всему периметру рамки в брусках с шагом 0,15-0,2 м необходимо высверлить отверстия диаметром 8-10 мм. Они требуются для предотвращения перегрева элементов батареи во время работы.

Правильно выполненные отверстия с шагом 0,15-0,20 м предохранят от перегрева элементы солнечной панели и обеспечат стабильную работу системы

Шаг #2 – соединение элементов солнечной панели

По размеру корпуса необходимо при помощи канцелярского ножа вырезать из ДВП подложку для солнечных элементов. При ее устройстве также нужно предусмотреть наличие вентиляционных отверстий, устраиваемых через каждые 5 см квадратно-гнездовым способом. Готовый корпус нужно дважды покрасить и высушить.

Солнечные элементы следует вверх ногами выложить на подложку из ДВП и выполнить распайку. Если готовые изделия уже не были оснащены припаянными проводниками, то работа существенно упрощается. Однако процесс распайки предстоит выполнить в любом случае.

Нужно помнить, что соединение элементов должно быть последовательным. Изначально элементы следует соединять рядами, а уже потом готовые ряды объединять в комплекс путем присоединения к токоведущим шинам.

По завершению элементы нужно перевернуть, уложить как положено и зафиксировать на своих местах при помощи силикона.

Каждый из элементов нужно надежно зафиксировать на подложке с помощью скотча либо силикона, в будущем это позволит избежать нежелательных повреждений

После чего надо проверить величину выходного напряжения. Ориентировочно оно должно находиться в пределах 18-20 В. Теперь батарею следует обкатать в течение нескольких дней, проверить способность зарядки аккумуляторных батарей. Только после контроля работоспособности производится герметизация стыков.

Шаг #3 – сборка системы электроснабжения

Убедившись в безукоризненном функционале, можно выполнить сборку системы электроснабжения. Входные и выходные контактные провода нужно вывести наружу для последующего подключения прибора.

Из оргстекла следует вырезать крышку и закрепить ее саморезами к бортикам корпуса через предварительно просверленные отверстия.

Вместо солнечных элементов для изготовления батареи можно использовать диодную цепь с диодами Д223Б. Панель из 36 последовательно соединенных диодов способна выдавать напряжение 12 В.

Диоды нужно предварительно замочить в ацетоне для удаления краски. В пластиковой панели следует высверлить отверстия, вставить диоды и произвести их распайку. Готовую панель необходимо поместить в прозрачный кожух и герметизировать.

Правильно ориентированные и установленные солнечные панели обеспечивают максимальную эффективность получения солнечной энергии, а также легкость и простоту обслуживания системы

Основные правила установки солнечной панели

От правильности установки солнечной батареи во многом зависит эффективность работы всей системы.

При установке нужно учесть следующие важные параметры:

  1. Затенение. Если батарея будет находиться в тени деревьев или более высоких сооружений, то она не только не будет нормально функционировать, но и может выйти из строя.
  2. Ориентация. Для максимального попадания солнечных лучей на фотоэлементы батарею необходимо направить в сторону солнца. Если Вы живете в северном полушарии, то панель должна быть ориентирована на юг, если же в южном, то наоборот.
  3. Наклон. Этот параметр определяется географическим положением. Специалисты рекомендуют устанавливать панель под углом, равным географической широте.
  4. Доступность. Нужно постоянно следить за чистотой лицевой стороны и вовремя удалять слой пыли и грязи. А в зимнее время панель периодически необходимо очищать от налипающего снега.

Желательно, чтобы при эксплуатации солнечной панели угол наклона не был постоянным. Прибор будет работать по максимуму только в случае прямо направленных на его крышку солнечных лучей.

Летом его лучше располагать под уклоном в 30º к горизонту. В зимнее время рекомендовано приподнимать и устанавливать на 70º.

В ряде промышленных вариантов солнечных батарей предусмотрены устройства слежения за движение солнца. Для бытового применения можно продумать и предусмотреть подставки, позволяющие менять угол наклона панели

Тепловые насосы для отопления

Тепловые насосы являются одним и из наиболее прогрессивных технологических решений в получении альтернативной энергии для вашего дома. Они не только наиболее удобны, но и экологически безопасны.

Их эксплуатация позволит существенно снизить расходы, связанные с оплатой на охлаждение и обогрев помещения.

Галерея изображений Фото из Тепловой насос с забором тепла земли или подземной воды Внешний блок теплового насоса воздух-вода или воздух-воздух Взаимосвязь внешней и внутренней составляющих эко-систем Оборудование внутреннего блока теплового насоса

Классификация тепловых насосов

Тепловые насосы классифицирую по количеству контуров, источнику энергии и способу ее получения.

В зависимости от конечных потребностей тепловые насосы могут быть:

  • Одно-, двух или трехконтурные;
  • Одно- или двухконденсаторные;
  • С возможностью нагрева или с возможностью нагрева и охлаждения.

По виду источника энергии и способу ее получения различают следующие тепловые насосы:

  • Грунт – вода. Применяются в умеренном климатическом поясе с равномерным прогревом земли вне зависимости от времени года. Для монтажа используют коллектор либо зонд в зависимости от типа грунта. Для бурения неглубоких скважин не требуется получения разрешительных документов.
  • Воздух – вода. Тепло аккумулируется из воздуха и направляется на нагрев воды. Установка будет уместной в климатических зонах с зимней температурой не ниже -15 градусов.
  • Вода – вода. Монтаж обусловлен наличием водоемов (озера, реки, грунтовые воды, скважины, отстойники). Эффективность такого теплового насоса является весьма внушительной, что обусловлено высокой температурой источника в холодное время года.
  • Вода – воздух. В данной связке в роли источника тепла выступают те же водоемы, но при этом тепло посредством компрессора передается непосредственно воздуху, используемому для обогрева помещений. В данном случае вода не выступает в качестве теплоносителя.
  • Грунт – воздух. В данной системе проводником тепла является грунт. Тепло из грунта через компрессор передается воздуху. В роли переносчика энергии применяют незамерзающие жидкости. Данная система считается наиболее универсальной.
  • Воздух – воздух. Работа данной системы сходна с работой кондиционера, способного обогревать и охлаждать помещение. Данная система является наиболее дешевой, так как не требует производства земляных работ и прокладки трубопроводов.

При выборе вида источника тепла нужно ориентироваться на геологию участка и возможность беспрепятственного проведения земляных работ, а также на наличие свободной площади.

При дефиците свободного места придется отказаться от таких источников тепла, как земля и вода и забирать тепло из воздуха.

От правильности выбора вида теплового насоса во многом зависит эффективность работы системы и затраты на ее устройство

Принцип работы теплового насоса

Принцип работы тепловых насосов основан на использовании цикла Карно, который в результате резкого сжатия теплоносителя обеспечивает повышение температуры.

По такому же принципу, но с противоположным эффектом, работает большинство климатических устройств с компрессорными установками (холодильник, морозильная камера, кондиционер).

Главный рабочий цикл, который реализуется в камерах данных агрегатов, полагает обратный эффект – в результате резкого расширения происходит сужение хладагента.

Именно поэтому один из наиболее доступных методов изготовления теплового насоса основан на использовании отдельных функциональных узлов, используемых в климатическом оборудовании.

Так, для изготовления теплового насоса может быть использован бытовой холодильник. Его испаритель и конденсатор будут играть роль теплообменников, отбирающих тепловую энергию из среды и направляющие ее непосредствен на нагрев теплоносителя, который циркулирует в системе отопления.

Низкопотенциальное тепло из грунта, воздуха или воды вместе с теплоносителем попадает в испаритель, где превращается в газ, а далее еще больше сжимается компрессором, в результате чего температура становится еще выше

Сборка теплового насоса из подручных материалов

Используя старую бытовую технику, а точнее, ее отдельные узлы, можно самостоятельно собрать тепловой насос. Как это можн сделать, рассмотрим далее.

Шаг #1 – подготовка компрессора и конденсатора

Работы начинаются с подготовки компрессорной части насоса, функции которой будут отведены соответствующему узлу кондиционера либо холодильника. Данный узел необходимо закрепить с помощью мягкой подвески на одной из стен рабочего помещения там, где это будет удобно.

После этого необходимо изготовить конденсатор. Для этого идеально подойдет бак из нержавеющей стали объемом 100 л. В него необходимо вмонтировать змеевик (можно взять готовую медную трубку от старого кондиционера либо холодильника.

Подготовленный бак нужно с помощью болгарки разрезать вдоль на две равные части – это необходимо для установки и закрепления змеевика в теле будущего конденсатора.

После монтажа змеевика в одной из половинок обе части емкости нужно соединить и сварить между собой таким образом, чтобы получился замкнутый бак.

Для изготовления конденсатора использован бак из нержавеющей стали объемом 100 л, с помощью болгарки он был разрезан пополам, вмонтирован змеевик и произведена обратная сварка

Учтите, что при сварке нужно использовать специальный электроды, а еще лучше применять аргоновую сварку, только она может обеспечить максимальное качество шва.

Шаг #2 – изготовление испарителя

Для изготовления испарителя потребуется герметичный пластиковый бак объемом 75-80 литров, в который нужно будет поместить змеевик из трубы диаметром ¾ дюйма.

Для изготовления змеевика достаточно обмотать медную трубку вокруг стальной трубы диаметром 300-400 мм с последующей фиксацией витков перфорированным уголком

На концах трубки необходимо нарезать резьбу для последующего обеспечения соединения с трубопроводом. После завершения сборки и проверки герметизации испаритель следует закрепить на стене рабочего помещения при помощи кронштейнов соответствующего размера.

Завершение сборки лучше доверить специалисту. Если часть сборки можно выполнить самостоятельно, то с пайкой медных труб и закачкой хладагента должен работать профессионал. Сборка основной части насоса заканчивается подключением обогревательных батарей и теплообменника.

Нужно отметить, что данная система является маломощной. Поэтому будет лучше, если тепловой насос станет дополнительной частью существующей системы отопления.

Шаг #3 – обустройство и подключение внешнего устройства

В качестве источника тепла лучше всего подойдет вода из колодца или скважины. Она никогда не замерзает и даже зимой ее температура редко опускается ниже +12 градусов. Потребуется устройство двух таких скважин.

Из одной скважины будет происходить забор воды с последующей подачей в испаритель.

Энергию подземной воды можно использовать круглогодично. На ее температуру не влияют погодные условия и времена года

Далее отработанная вода будет сбрасываться во вторую скважину. Остается все это подключить к входу в испаритель, к выходу и герметизировать.

В принципе, система готова к эксплуатации, но для ее полной автономности потребуется система автоматики, контролирующая температуру движущегося теплоносителя в отопительных контурах и давление фреона.

На первых порах можно обойтись обыкновенным пускателем, но следует учесть, что запуск системы после отключения компрессора можно выполнять через 8-10 минут – это время необходимо для выравнивания давления фреона в системе.

Устройство и использование ветрогенераторов

Энергию ветра использовали еще наши предки. С тех далеких времен, в принципе, ничего не изменилось.

Отличие состоит лишь в том, что жернова мельницы заменены генератором и приводом, обеспечивающими преобразование механической энергии лопастей в электрическую энергию.

Галерея изображений Фото из Шаг 1: Подбор деталей для изготовления ветрогенератора Шаг 2: Извлечение двигателя и патрона из ненужной дрели Шаг 3: Детали для устройства крепежного узла ветрогенератора Шаг 4: Установка крепежного узла в собранном виде Шаг 5: Установка подшипника с внутренней стороны пластины Шаг 6: Сборка ветрогенератора и установка на площадкуСборка ветрогенератора и установка на площадку Шаг 7: Крепление лопастей ветрогенератора к пластине Шаг 8: Небольшой самодельный ветрогенераторНебольшой самодельный ветрогенератор

Установка ветрогенератора считается экономически выгодной, если среднегодовая скорость ветра превышает 6 м/с.

Монтаж лучше всего производить на возвышенностях и равнинах, идеальными местами считаются побережья рек и крупных водоемов вдали от различных инженерных коммуникаций.

Для преобразования энергии воздушных масс в электрическую применяются ветрогенераторы, наиболее продуктивные в прибрежных регионах

Классификация ветряных генераторов

Классификация ветряных генераторов зависит от следующих основных параметров:

  • В зависимости от размещения оси могут быть вертикальные вертяки и горизонтальные. Горизонтальная конструкция предусматривает возможность автоповорота основной части для поиска ветра. Основное оборудование вертикального ветрогенератора расположено на земле, поэтому его легче обслуживать, при этом КПД вертикально расположенных лопастей ниже.
  • В зависимости от количества лопастей различают одно-, двух-, трех- и многолопастные ветряные генераторы. Многолопастные ветрогенераторы используют при малой скорости воздушного потока, применяются редко из-за необходимости установки редуктора.
  • В зависимости от материала, используемого для изготовления лопастей, лопасти могут быть парусными и жесткими. Лопасти парусного типа просты в изготовлении и монтаже, но требуют частой замены, так как быстро выходят из строя под воздействием резких порывов ветра.
  • В зависимости от шага винта, различают изменяемый и фиксируемый шаги. При использовании изменяемого шага можно добиться значительного увеличения диапазона рабочих скоростей ветрогенератора, но это приведет к неминуемому усложнению конструкции и увеличению ее массы.

Мощность всех видов приборов, преобразующих энергию ветра в электрический аналог, зависит от площади лопастей.

Для работы ветрогенераторам практически не нужны классические источники энергии. Использование установки мощностью около 1 мВт позволит сэкономить 92 000 баррелей нефти или 29 000 т угля за 20 лет

Устройство ветряного генератора

В любой ветряной установке присутствуют следующие основные элементы:

  • Лопасти, вращающиеся под действием ветра и обеспечивающие движение ротора;
  • Генератор, который вырабатывает переменный ток;
  • Контроллер управления лопастями, отвечает за образование переменного тока в постоянный, который требуется для зарядки аккумуляторов;
  • Аккумуляторные батареи, нужны для накопления и выравнивания электрической энергии;
  • Инвертор, выполняет обратное превращение постоянного тока в переменный, от которого работают все бытовые приборы;
  • Мачта, необходима для подъема лопастей над поверхностью земли до достижения высоты перемещения воздушных масс.

При этом генератор, лопасти, обеспечивающие вращение и мачта считаются основными частями ветрогенератора, а все остальное – дополнительные компоненты, обеспечивающие надежную и автономную работу системы в целом

В схему любого даже самого простого ветряного генератора обязательно должны быть включены инвертор, контроллер заряда и аккумуляторные батареи

Тихоходный ветряной генератор из автогенератора

Считается, что данная конструкция является наиболее простой и доступной для самостоятельного изготовления. Она может стать как самостоятельным источником энергии, так и взять на себя часть мощности существующей системы электроснабжения.

При наличии автомобильного генератора и аккумуляторной батареи все остальные части можно изготовить из подручных материалов.

Шаг #1 – изготовление ветрового колеса

Лопасти считаются одной из наиболее важных частей ветрогенератора, так как их конструкцией определяется работа остальных узлов. Для изготовления лопастей могут быть использованы самые разные материалы – ткань, пластик, металл и даже дерево.

Мы изготовим лопасти из канализационной пластиковой трубы. Основные преимущества данного материала – дешевизна, высокая влагоустойчивость, простота обработки.

Работы выполняются в следующем порядке:

  1. Производится расчет длины лопасти, при этом диаметр пластиковой трубы должен составлять 1/5 от необходимого метража;
  2. С помощью лобзика трубу следует разрезать вдоль на 4 части;
  3. Одна часть станет шаблоном для изготовления всех последующих лопастей;
  4. После обрезки трубы заусеницы на краях необходимо обработать наждачной бумагой;
  5. Вырезанные лопасти необходимо зафиксировать на заранее приготовленном алюминиевом диске с предусмотренным креплением;
  6. Также к этому диску после переделки нужно прикрутить генератор.

Учтите, что труба из ПВХ не обладает достаточной прочностью и не сможет противостоять сильным порывам ветра. Для изготовления лопастей лучше всего применять трубу из ПВХ толщиной не менее 4 см.

Далеко не последнюю роль на величину нагрузки оказывает размер лопасти. Поэтому не лишним будет рассмотреть вариант снижения размера лопасти за счет увеличения их количества.

Лопасти ветрогенератора изготовлены по шаблону из ¼ ПВХ канализационной трубы диаметром 200 мм, разрезанной вдоль оси на 4 части

После сборки следует произвести балансировку ветрового колеса. Для этого требуется закрепить его горизонтально на штативе в закрытом помещении. Результатом правильной сборки будет неподвижность колеса.

Если же происходит вращение лопастей, необходимо выполнить их подточку абразивом доя уравновешивания конструкции.

Шаг #2 – изготовление мачты ветрогенератора

Для изготовления мачты можно использовать стальную трубу диаметром 150-200 мм. Минимальная длина мачты должна составлять 7 м. Если на участке есть препятствия для перемещения воздушных масс, то колесо ветрогенератора нужно поднять на высоту, превышающую препятствие не менее, чем на 1 м.

Колышки для закрепления растяжек и саму мачту необходимо забетонировать. В качестве растяжек можно использовать стальной либо оцинкованный трос толщиной 6-8 мм.

Растяжки мачты придадут ветрогенератору дополнительную устойчивость и снизят расходы, связанные с устройством массивного фундамента, их стоимость гораздо ниже остальных типов мачт, но требуется дополнительная площадь для растяжек

Шаг #3 – переоборудование автомобильного генератора

Переделка состоит лишь в перемотке провода статора, а также в изготовлении ротора с неодимовыми магнитами. Для начала нужно высверлить отверстия, необходимые для фиксации магнитов в полюсах ротора.

Установка магнитов выполняется с чередованием полюсов. По завершению работ межмагнитные пустоты нужно заполнить эпоксидной смолой, а сам ротор обернуть бумагой.

При перемотке катушки нужно учесть, что эффективность работы генератора будет зависеть от количества витков. Катушку необходимо мотать по трехфазной схеме в одном направлении.

Готовый генератор нужно испытать, результатом правильно выполненной работы будет показатель в 30 В при 300 оборотах генератора.

Переоборудованный генератор готов к проведению испытаний по выдаваемому номинальному напряжению перед финальным монтажом всей системы тихоходного ветрогенератора

Шаг #4- завершение сборки тихоходного ветрогенератора

Поворотная ось генератора выполняется из трубы с насаженными двумя подшипниками, а хвостовая часть вырезается из оцинкованного железа толщиной 1,2 мм.

Перед креплением генератора к мачте необходимо изготовить раму, лучше всего для этого подойдет профильная труба. При выполнении крепления нужно учесть, что минимальное расстояние от мачты до лопасти должно быть больше 0,25 м.

Под действием потока ветра происходит движение лопастей и ротора, в результате достигается вращение редуктора и получается электрическая энергия

Для работы системы после ветрогенератора нужно установить контроллер заряда, аккумуляторные батареи, а также инвертор.

Емкость батареи определяется мощностью ветрогенератора. Данный показатель зависит от размеров ветряного колеса, количества лопастей и скорости ветра.

Изготовление солнечной панели с пластмассовым корпусом, перечень материалов и порядок выполнения работ

Принцип работы и обзор геотермальных насосов

Переоборудование автогенератора и изготовление тихоходного ветрогенератора своими руками

Отличительной чертой альтернативных источников энергии является их экологическая чистота и безопасность.

Довольно малая мощность установок и привязка к определенным условиям местности позволяют эффективно эксплуатировать только комбинированные системы традиционных и альтернативных источников.

Перспективные источники энергии

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

РЕФЕРАТ

Перспективные источники энергии

История ветроэнергетики начинается с незапамятных времён: энергия ветра вот уже более 6000 лет надежно и верно служит людям. До изобретения паровой машины основным источником энергии во многих странах была именно энергия ветра. В XVI веке в городах Европы начинают строить водонасосные станции с использованием гидродвигателя и ветряной мельницы. В России ветряные установки использовались в основном для помола зерна. До революции их в стране насчитывалось около 200 000, и перемалывали они более 2 миллиардов пудов зерна в год.

Ветер — неограниченный ресурс для производства электроэнергии. Он есть везде, бесконечен, экологически чист. Если в прошлом энергию ветра использовали, как правило, для повышения эффективности физического труда, то в настоящее время энергию ветра применяют в основном для выработки электроэнергии (ветер вращает лопасти электрогенератора). Непостоянство ветра не является проблемой его использования на локальном уровне (при использовании ветрогенератора в составе гибридной установки и наличия аккумуляторов). Малые ветроустановки обычно используют для автономной работы (например, на отдельном хуторе). Более крупные часто концентрируют на одной площадке, создавая так называемую ветровую ферму. В последние годы ветроэнергетика развивалась более высокими темпами, чем энергетика, использующая остальные виды альтернативных источников энергии. Отсюда и значительный рост мощностей ветроустановок в мире. Объём выработки электроэнергии из ветра в период с 2000 г. по 2006 г. вырос в 4 раза. Темпы роста рынка ветрогенераторов в мире за последние несколько лет составляют 25-30%. На конец 2006 г. суммарная мощность всех ветрогенераторов в мире оценивалась в 74 ГВт. Суммарная мощность всех ветрогенераторов, установленных в 2006 г. составила 15,2 ГВт. Общая стоимость ветрогенераторов, установленных в 2006 г. составила 23 млрд долл. США (или 1500 долл. США за 1 кВт). И хотя энергия ветра составляет лишь около 1% от общей величины выработки электроэнергии в мире, для некоторых стран этот показатель значительно выше. В частности, доля ветряной электроэнергии в Дании составляет 20%, в Испании — 9%, в Германии — 7%. Наибольшее распространение в мире получила конструкция ветрогенератора с тремя лопастями и горизонтальной осью вращения, хотя кое-где ещё встречаются и двухлопастные. Наиболее эффективной конструкцией для территорий с малой скоростью ветровых потоков признаны ветрогенераторы с вертикальной осью вращения, т. н. роторные, или карусельного типа. Сейчас все больше производителей переходят на производство таких установок, так как далеко не все потребители живут на побережьях, а скорость континентальных ветров обычно находится в диапазоне от 3 до 12 м/с. В таком ветрорежиме эффективность вертикальной установки намного выше. Стоит отметить, что у вертикальных ветрогенераторов есть ещё несколько существенных преимуществ: они практически бесшумны, и не требуют совершенно никакого обслуживания, при сроке службы более 20 лет. Системы торможения, разработанные в последние годы, гарантируют стабильную работу даже при периодических шквальных порывах до 60 м/с.

Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Мощность высотных потоков ветра (на высотах 7-14 км) примерно в 10-15 раз выше, чем у приземных ?. Эти потоки обладают постоянством, почти не меняясь в течение года. Возможно использование потоков, расположенных даже над густонаселёнными территориями (например — городами), без ущерба для хозяйственной деятельности.

Гидроэнергия

Гидроэнеэргия — энергия, сосредоточенная в потоках водных масс в русловых водотоках и приливных движениях ?. Чаще всего используется энергия падающей воды. Для повышения разности уровней воды, особенно в нижних течениях рек, сооружаются плотины. Это еще один из источников энергии, претендующих на экологическую чистоту.

В начале XX века крупные и горные реки мира привлекли к себе внимание, а концу столетия большинство из них было перегорожено каскадами плотин, дающими баснословно дешевую энергию. Малая гидроэнергетика использует энергию небольших водотоков с помощью микро — и малых ГЭС, практически не зависит от погодных условий и способна обеспечить устойчивую подачу дешевой электроэнергии потребителю. Эти же мини-ГЭС могут быть установлены и на крупных реках с относительно быстрым течением.

Детально разработаны центробежные и пропеллерные энергоблоки рукавных переносных гидроэлектростанций мощностью от 0.18 до 30 киловатт. При поточном производстве унифицированного гидротурбинного оборудования «мини-ГЭС» способны конкурировать с «макси» по себестоимости киловатт-часа. Несомненным плюсом является также возможность их установки даже в самых труднодоступных уголках страны: все оборудование можно перевезти на одной вьючной лошади, а установка или демонтаж занимает всего несколько часов.

Еще одной очень перспективной разработкой, не получившей пока широкого применения, является недавно созданная геликоидная турбина Горлова (по имени ее создателя). Ее особенность заключается в том, что она не нуждается в сильном напоре и эффективно работает, используя кинетическую энергию водяного потока — реки, океанского течения или морского прилива.

Это изобретение изменило привычное представление о гидроэнергостанции, мощность, которой ранее зависела только от силы напора воды, то есть от высоты плотины ГЭС.

Производство гидроэнергии в мире возрастает за последние годы примерно такими же темпами, как и общее производство электроэнергии. Производство электроэнергии на атомных электростанциях составило в 1962 г. в Западной Европе примерно 0 5%, в США 0 25% всего производства. Геотермическая энергия пока используется в небольших количествах: на ее основе в Италии в 1962 г. выработано 2 3 Твт — ч; имеются небольшие геотермические электростанции в Новозеландии, Исландии, СССР и США ?.

Производство гидроэнергии в рассматриваемые 40 лет, вероятно, увеличится в 2 7 раза, однако ее относительное участие в (Мировом энергобалансе несколько снизится.

Энергия морских волн

Энергия волн — неисчерпаемый источник энергии. Волновая энергия представляет собой сконцентрированную энергию ветра и, в конечном итоге, солнечной энергии. Мощность, полученная от волнения всех океанов планеты, не может быть больше мощности, получаемой от Солнца. Но удельная мощность электрогенераторов, работающих от волн, может быть гораздо большей, чем для других альтернативных источников энергии. Несмотря на схожую природу, энергию волн принято отличать от энергии приливов и океанских течений. Выработка электроэнергии с использованием энергии волн не является распространённой практикой, в настоящее время в этой сфере проводятся только экспериментальные исследования.

Общепринятой в настоящее время считается точка зрения, что энергию волн целесообразно использовать в открытом море, а не у берегов, где она снижается вследствие трения и в обратной циркуляции воды. Преобразование энергии морских волн в электрическую производится с помощью воздушных или гидравлических турбин ?.

В основе работы волновых энергетических станций лежит воздействие волн на рабочие органы, выполненные в виде поплавков, маятников, лопастей, оболочек и т.п. Механическая энергия их перемещений с помощью электрогенераторов преобразуется в электрическую.

В настоящее время волноэнергетические установки используются для энергопитания автономных буев, маяков, научных приборов. Бакены и маяки, использующие энергию волн, уже усеяли прибрежные воды Японии. В течение многих лет бакены — свистки береговой охраны США действуют благодаря волновым колебаниям.

Попутно крупные волновые станции могут быть использованы для волнозащиты морских буровых платформ, открытых рейдов, марикультурных хозяйств.

Началось промышленное использование волновой энергии. В мире уже около 400 маяков и навигационных буев получают питание от волновых установок. В Индии от волновой энергии работает плавучий маяк порта Мадрас. В Норвегии с 1985 г. действует первая в мире промышленная волновая станция мощностью 850 кВт. В 2002 г. введена в эксплуатацию волновая опытная электростанция в Португалии, которая при воздействии волн высотой до 5 м вырабатывает в год 6-10 млн кВт·ч электроэнергии ?.

Создание волновых электростанций определяется оптимальным выбором акватории океана с устойчивым запасом волновой энергии, эффективной конструкцией станции, в которую встроены устройства сглаживания неравномерного режима волнения. Считается, что эффективно волновые станции могут работать при использовании мощности около 80 кВт/м. Как показывает накопленный мировой опыт, удельные капиталовложения в строительство волновой электростанции достигают $5000/кВт, и вырабатываемая ими электроэнергия пока в 2-3 раза дороже традиционной, но в будущем ожидается значительное снижение ее стоимости.

Источники энергии будущего

Ядерная энергия

Ядерная энергия — это энергия, освобождающаяся в результате внутренней перестройки атомных ядер. Известны экзотермические ядерные реакции, высвобождающие ядерную энергию. Энергия деления ядер урана или плутония применяется в ядерном и термоядерном оружии (как пускатель термоядерной реакции). Существовали экспериментальные ядерные ракетные двигатели, но испытывались они исключительно на Земле и в контролируемых условиях, по причине опасности радиоактивного загрязнения в случае аварии.

На атомных электрических станциях ядерная энергия используется для получения тепла, используемого для выработки электроэнергии и отопления. Ядерные силовые установки решили проблему судов с неограниченным районом плавания (атомные ледоколы, атомные подводные лодки, атомные авианосцы) ?. В условиях дефицита энергетических ресурсов ядерная энергетика считается наиболее перспективной в ближайшие десятилетия.

Мирное использование источников ядерной энергии составляет основу промышленного производства и жизни таких стран, как Франция и Япония, Германия и Великобритания, США и Россия. И если две последние страны еще в состоянии заместить ядерные источники энергии на тепловые станции, то для Франции, или Японии это попросту невозможно.

Использование атомной энергии создает много проблем. В основном все эти проблемы связаны с тем, что используя себе на благо энергию связи атомного ядра (которую мы и называем ядерной энергией), человек получает существенное зло в виде высокорадиоактивных отходов, которые нельзя просто выбросить. Отходы от атомных источников энергии требуется перерабатывать, перевозить и хранить продолжительное время в безопасных условиях.

Ядерной энергетике, как и многим другим отраслям промышленности, присущи вредные или опасные факторы воздействия на окружающую среду. Наибольшую потенциальную опасность представляет радиоактивное загрязнение. Сложные проблемы возникают с захоронением радиоактивных отходов и демонтажем отслуживших свой срок атомных электростанций. Срок их службы около 20 лет, после чего восстановление станций из-за многолетнего воздействия радиации на материалы конструкций невозможно.

Атомные электростанции строятся прежде всего в европейской части страны. Это связано с преимуществами АЭС по сравнению с тепловыми электростанциями, работающими на органическом топливе. Ядерные реакторы не потребляют дефицитного органического топлива и не загружают перевозками угля железнодорожный транспорт. Атомные электростанции не потребляют атмосферный кислород и не засоряют среду золой и продуктами сгорания. Однако размещение АЭС в густонаселенных областях таит в себе потенциальную угрозу.

Неуправляемая цепная реакция с большим коэффициентом увеличения нейтронов осуществляется в атомной бомбе. Чтобы мог произойти взрыв, размеры делящегося материала должны превышать критические. Это достигается либо путем быстрого соединения двух кусков делящегося материала с докритическими размерами, либо же за счет резкого сжатия одного куска до размеров, при которых утечка нейтронов через поверхность падает настолько, что размеры куска оказываются надкритическими. То и другое осуществляется с помощью обычных взрывчатых веществ. При взрыве атомной бомбы температура достигает десятков миллионов кельвин. При такой высокой температуре очень резко повышается давление и образуется мощная взрывная волна. Одновременно возникает мощное излучение. Продукты цепной реакции при взрыве атомной бомбы сильно радиоактивны и опасны для жизни живых организмов. Атомные бомбы применили США в конце Второй мировой войны против Японии. В 1945 г. были сброшены атомные бомбы на японские города Хиросима и Нагасаки.

Водород

Использование водорода в качестве источника энергии — очень перспективное направление: двигатели на его основе выделяют вместо выхлопных газов водяной пар, то есть безопасны для окружающей среды. К тому же водород является возобновляемым источником — его можно получать различными способами. Среди самых популярных можно отметить паровую конверсию метана, т.е. получение водорода при нагреве смеси водяного пара и метана. Сегодня промышленное получение водорода связано с выбросами углекислого газа, что усиливает парниковый эффект ?. К технологиям, позволяющим избежать загрязнения окружающей среды, относится получение водорода с помощью различных бактерий. Один из перспективных объектов — пурпурные бактерии Rhodobacter Sphaeroides. Эти бактерии отличаются большим разнообразием метаболических процессов, они могут получать энергию как из органических веществ, так и из солнечного света. При переработке простых органических веществ (глюкозы, лактата, органических кислот) эти бактерии выделяют молекулярный водород.

Уже сегодня существуют различные типы «бактериальных батареек», в которых живые существа вырабатывают электричество, например, питаясь сахарным сиропом. Пока что такие системы могут снабжать энергией в лучшем случае плеер, но если представить, что когда-нибудь ученые создадут двигатель на основе генетически модифицированных бактерий, выделяющих молекулярный водород, сахаром можно будет заправлять и автомобиль.

Солнечная энергия

Солнечная энергетика по многим прогнозам является одной из самых перспективных отраслей возобновляемой энергетики. Развитие солнечной энергетики также связано с масштабными программами поддержки возобновляемой энергетики, реализуемыми в развитых странах Европы, США, Японии.

Количество солнечной энергии, поступающей на Землю, превышает энергию всех мировых запасов нефти, газа, угля и других энергетических ресурсов, в том числе возобновляемых. Использование всего лишь 0,0125% солнечной энергии могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0,5% — полностью покрыть потребности в будущем. Потенциал солнечной энергии настолько велик, что, по существующим оценкам, солнечной энергии, поступающей на Землю каждую минуту, достаточно для того, чтобы удовлетворить текущие глобальные потребности человечества в энергии в течение года.

Солнечная энергия широко используется как для нагрева воды, так и для производства электроэнергии. Солнечные коллекторы производятся из доступных материалов: сталь, медь, алюминий и т.д., то есть без применения дефицитного и дорогого кремния. Это позволяет значительно сократить стоимость оборудования, и произведенной на нём энергии. В настоящее время именно солнечный нагрев воды является самым эффективным способом преобразования солнечной энергии.

Солнечная энергия может применяться в различных химических процессах. Например:

Израильский Weizmann Institute of Science в 2005 году испытал технологию получения не окисленного цинка в солнечной башне ?. Оксид цинка в присутствии древесного угля нагревался зеркалами до температуры 1200°С на вершине солнечной башни.

В результате процесса получался чистый цинк. Далее цинк можно герметично упаковать и транспортировать к местам производства электроэнергии. На месте цинк помещается в воду, в результате химической реакции получается водород и оксид цинка. Оксид цинка можно ещё раз поместить в солнечную башню и получить чистый цинк ?. Технология прошла испытания в солнечной башне канадского Institute for the Energies and Applied Research.

Исходя из того, что солнечная энергия очень востребована в нынешних условиях, на рынке появляются современные предложения ее использования.

1) Фонарик на солнечных батареях (главной особенностью устройства является возможность зарядки литиевой аккумуляторной батареи при помощи солнечных модулей, вмонтированных непосредственно в сам корпус фонарика).

2) Солнечный генератор (генератор способен вырабатывать 220 В и более).

3) Солнечные фонари для дачи (энергия, получаемая от батарей идет исключительно на освещение, а не на нагрев спиралей; осветительный период может длиться несколько десятков часов).

4) Уличные светильники на солнечных батареях (очень продолжительный строк эксплуатации — до 25 лет).

Главное — использовать солнечную энергию так, чтобы ее стоимость была минимальна или вообще равнялась нулю. По мере совершенствования технологий и дорожания традиционных энергоресурсов эта энергия будет находить все новые области применения.

Энергосберегающие технологии

Биомасса

Биомасса — шестой по запасам из доступных на настоящий момент источников энергии после горючих сланцев, урана, угля, нефти и природного газа.

Биомасса — пятый по производительности возобновимй источник энергии после прямой солнечной, ветровой, гидро- и геотермальной энергии. Ежегодно на земле образуется около 170 млрд. т. первичной биологической массы и приблизительно тот же объём разрушается. Основная часть топливной биомассы (до 80%), это прежде всего древесина, употребляется для обогрева жилищ и приготовления пищи в развивающихся странах.

В процессе фотосинтеза в растениях появляются углеводороды: сахар и крахмал. Углеводороды — органические компоненты, получаемые из угля и водорода. Эти компоненты хранят энергию в связях, удерживающих их. Хранимая энергия испускается, когда растения съедают или, что нам важнее, когда растения закапывают. Кислород в воздухе вступает в реакцию с углеродом в растениях, при этом выделяется энергия, вода, и диоксид углерода (CO2) ?. Эта энергия используется для превращения воды в пар. Пар вращает турбины, вырабатывающие электричество.

Биогаз

Метановое разложение биомассы происходит под воздействием трёх видов бактерий. В цепочке питания последующие бактерии питаются продуктами жизнедеятельности предыдущих. Первый вид — бактерии гидролизные, второй — кислотообразующие, третий — метанообразующие. В производстве биогаза участвуют не только бактерии класса метаногенов, а все три вида. Одной из разновидностей биогаза является биоводород, где конечным продуктом жизнедеятельности бактерий является не метан, а водород. Производство биогаза позволяет предотвратить выбросы метана в атмосферу. Метан оказывает влияние на парниковый эффект в 21 раз более сильное, чем СО2, и находится в атмосфере 12 лет. Захват метана — лучший краткосрочный способ предотвращения глобального потепления. Переработанный навоз, барда и другие отходы применяются в качестве удобрения в сельском хозяйстве. Это позволяет снизить применение химических удобрений, сокращается нагрузка на грунтовые воды.

Биогазовые установки оснащены блочными теплоэлектроцентралями, которые производят тепловую и электрическую энергию. Эти приборы очень просты в эксплуатации и не требуют частого ремонта. Для того, чтобы назвать такую установку качественной, необходимо, чтобы в ее состав входило немало элементов: реактор, мешалки, газгольдер, газовая система, насосная станция, сепаратор, емкость гомогенизации, загрузчик твердого или мягкого сырья, приборы контроля, система безопасности, КИПиА с визуализацией ?. В целом, можно сказать, что биогазовое устройство — это приспособление, которое осуществляет переработку органических отходов (сырья) в биогаз.

Энергия, бесспорно, играет огромную роль в поддержании и дальнейшем развитии цивилизации. Потребление энергии — важный показатель жизненного уровня. За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник бал исчерпан.

Сейчас, в начале 21-го века, начинается новый значительный этап земной энергетики.

На пути широкого внедрения альтернативных источников энергии стоят трудно разрешимые экономические и социальные проблемы. Прежде всего, это высокая капиталоемкость, вызванная необходимостью создания новой техники и технологии. Во-вторых, высокая материалоемкость: создание мощных ПЭС требует, к примеру, огромных количеств металла, бетона и т.д., В-третьих, под некоторые станции требуется значительное отчуждение земли или морской акватории. Кроме того, развитие использования альтернативных источников энергии сдерживается также нехваткой специалистов. Решение этих проблем требует комплексного подхода на национальном и международном уровне, что позволит ускорить их реализацию. Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя все самые новейшие идей, изобретения, достижения науки. Это и понятно: энергетика связана буквально со всем, и все тянется к энергетике, зависит от нее. Поэтому энергохимия, водородная энергетика, космические электростанции, энергия, запечатанная в антивеществе, кварках, «черных дырах», вакууме, — это всего лишь наиболее яркие штрихи. Рассказ об энергии может быть бесконечен, неисчислимы альтернативные формы ее использования при условии, что мы должны разработать для этого эффективные и экономичные методы. Как говорил один ученый мудрец, имя которого осталось неизвестным: «Нет простых решений, есть только разумный выбор».

Список литературы

энергия ядерный водородный солнечный

1) Мякишев Г.Я., Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г.Я. Мякишев, Б.В. Буховцев, В.М. Чаругин; под ред. В.И. Николаева, Н.А. Парфентьевой. — 17-е изд., перераб. и доп. — М.: Просвещение, 2008. — 399 с: ил.

2) Петросова Р.А. и др. Естествознание и основы экологии. (Учебное пособие) (2007, 303 с.).

3) Концепции современного естествознания. Под ред. Михайлова Л.А. (2008, 336 с.)

4) Клягин Н.В. Современная научная картина мира. (Учебное пособие) (2007, 265 с.).

5) Исаков А.Я. Энергия. (Учебное пособие) В 3-х частях. (2009, 206 с.; 2010, 254 с.; 2010, 259 с.).

6) Эволюция жизни. Иорданский Н.Н. (2001, 425). М.: Академия, 2009.

7) Стародубцев В.А. Концепции современного естествознания. Томск.: Том. политех. ун-т, 2009. — 390 с.

8) А.П. Кузнецов и др. Анализ в физике. 2008 год. 85 стр.

9) Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10 класс. 2008 год. 373 стр.

10) Алиев И.И. Абрамов М.Б. Электрические аппараты, справочник. 2007

год. 241 стр.

11) Головацкий В.Г. Пономарев И.В. Современные средства РЗиА

энергосетей. 2007 год.

12) Дьяков А.Ф., Овчаренко Н.И. Микропроцессорная автоматика и

релейная защита электроэнергетических систем. Изд. М.: ИД МЭИ.

2010 год. 336 стр.

13) Ресурсы интернета:

Откуда можно получать энергию и в каком виде

На самом деле энергия, в том или ином виде, в природе есть практически везде — солнце, ветер, вода, земля — везде есть энергия. Основная задача — извлечь ее оттуда. Этим человечество занимается уже не одну сотню лет и достигло неплохих результатов. На сегодняшний момент альтернативные источники энергии могут обеспечить дом теплом, электроэнергией, газом, теплой водой. Причем альтернативная энергетика не требует каких-то сверх навыков или сверх знаний. Все можно сделать для своего дома своими руками. Итак, что можно сделать:

  • Использовать солнечную энергию для получения электрической энергии или для подогрева воды — для ГВС или низкотемпературного отопления (солнечные батареи и коллекторы).
  • Преобразовывать энергию ветра в электричество (ветрогенераторы).
  • При помощи тепловых насосов отапливать дом, отбирая тепло у воздуха, земли, воды (тепловые насосы).
  • Получать газ из отходов жизнедеятельности домашних животных и птицы (биогазовые установки).

    Альтернативная энергетика — способ самостоятельно обеспечить собственные потребности

Все альтернативные источники энергии способны полностью обеспечить потребности человека, но для этого требуются слишком большие капиталовложения или/и слишком большие площади. Потому разумнее делать комбинированную систему: получать энергию от альтернативных источников, а при недостатке «добирать» из централизованных сетей.

Использование солнечной энергии

Один из самых мощных альтернативных источников энергии для дома — солнечное излучение. Для преобразования солнечной энергии есть два типа установок:

  • солнечные батареи вырабатывают электрический ток;
  • солнечные коллекторы греют воду.

    От солнечной энергии можно греть воду или получать электрический ток

Не стоит думать что работают установки только не юге и только летом. Хорошо они работают и зимой. В ясную погоду при выпавшем снеге выработка энергии только немного ниже летней. Если в вашем регионе большое количество ясных дней, использовать подобную технологию можно.

Солнечные батареи

Солнечные батареи собирают из фотоэлектрических преобразователей, которые изготавливают на базе минералов, которые под действием солнечного света испускают электроны — вырабатывают электрический ток. Для частного применения используются кремниевые фотопреобразователи. По своей структуре они бывают монокристаллическими (сделаны из одного кристалла) и поликристаллическими (много кристаллов). Монокристаллические имеют более высокий КПД (13-25% в зависимости от качества) и более продолжительный срок службы, но стоят дороже. Поликристаллические вырабатывают меньше электроэнергии (9-15%) и быстрее выходят из строя, но имеют более низкую цену.

Это поликристаллический фотопреобразователь. Обращаться с ними надо аккуратно — они очень хрупкие (монокристаллические тоже, но не в такой степени)

Сборка солнечной батареи своими руками несложна. Сначала надо приобрести некоторое количество кремниевых фотоэлементов (количество зависит от требуемой мощности). Чаще всего их покупают на китайских торговых площадках типа АлиЭкспресс. Затем порядок действий прост:

  • Сделать каркас (из деревянных планок или металлических уголков). Установить на него подложку. Прозрачную — стекло, оргстекло (монолитный поликарбонат) — если солнечная батарея будет висеть на окне, и непрозрачную (фанера, окрашенная в белый цвет), если устанавливать батарею будете не крыше.
  • При помощи алюминиевых проводников соединить элементы в одну батарею (параллельно). Проводники могут быть сразу припаяны к пластинам (стоят чуть дороже) или придется покупать отдельно и затем паять самостоятельно.
  • Готовую батарею надо загерметизировать. Заливают ее эпоксидной смолой или проклеивают специальной пленкой EVA. При герметизации необходимо следить чтобы не было пустот — воздушных пузырьков. Они очень сильно снижают производительность батареи, потому выгоняем их тщательно.

    Это уже готовая солнечная батарея

Несколько слов о том, почему подложку для солнечной панели (батареи) надо красить в белый цвет. Рабочий диапазон температур кремниевых пластин от — 40°C до +50°C. Работа при более высоких или низких температурах приводит к быстрому выходу элементов из строя. На крыше, летом, в закрытом объеме, температура может быть намного выше +50°C. Потому и необходим белый цвет — чтобы не перегреть кремний.

Солнечные коллекторы

При помощи солнечных коллекторов можно нагревать воду или воздух. Куда направлять нагретую солнцем воду — в краны для горячего водоснабжения или в систему отопления — выбираете вы сами. Только отопление будет низкотемпературным — для теплого пола, то что требуется. Но для того, чтобы температура в доме не зависела от погоды, систему требуется сделать резервируемой, чтобы при необходимости подключался другой источник тепла или котел переходил на другой источник энергии.

Наиболее распространенные трубчатые солнечные коллекторы

Солнечные коллекторы есть трех видов: плоские, трубчатые и воздушные. Наиболее распространенные — трубчатые, но и другие тоже имеют право на существование.

Плоские пластиковые

Две панели — черная и прозрачная — соединены в один корпус. Между ними расположен медный трубопровод в виде змейки. От солнца нижняя темная панель нагревается. от нее греется медь, а от нее — проходящая по лабиринту вода. Такой способ использования альтернативных источников энергии не самый эффективный, но привлекателен тем, что он очень прост в исполнении. Таким образом можно нагревать воду в бассейне. Надо будет только зациклить ее подачу (при помощи циркуляционного насоса). Точно также можно подогревать воду в емкости для летнего душа или использовать ее для бытовых нужд. Недостаток подобных установок — низкая эффективность и производительность. Чтобы нагреть большой объем воды, нужно или много времени, или большое количество плоских коллекторов.

Плоский солнечный коллектор

Трубчатые коллекторы

Это стеклянные трубки — вакуумные или коаксиальные — по которым протекает вода. Специальная система позволяет по максимуму концентрировать в трубках тепло, которое передается протекающей через них воде.

Трубчатые коллекторы могут быть вакуумными и перьевыми

В системе обязательно есть накопительная емкость, в которой вода и греется. Циркуляция воды в системе обеспечивается насосом. Такие системы самостоятельно не сделать — стеклянные трубки сделать своими руками проблематично и это — главный недостаток. Вместе с высокой ценой он сдерживает широкое внедрение этого источника энергии для дома. А сама система очень эффективна, на «ура» справляется с нагревом воды для ГВС и вносит приличный вклад в отопление.

Схема организации отопления и ГВС за счет альтернативных источников энергии — с использованием солнечных коллекторов

Воздушные коллекторы

В нашей стране они встречаются очень редко и зря. Они просты, их легко можно сделать своими руками. Единственный минус — требуется большая площадь: могут занимать всю южную (восточную, юго-восточную) стену. Система очень похожа на плоские коллекторы — черная нижняя панель, прозрачная верхняя, но греют они напрямую воздух, который принудительно (вентилятором) или естественным путем направляется в помещение. Несмотря на кажущуюся несерьезность, таким способом можно на протяжении светового дня греть небольшие помещения, в том числе и технические или подсобные: гаражи, дачи, сараи для живности.

Устройство возушного коллектора

Такой альтернативный источник энергии как солнце, дарит нам свое тепло, но большая его часть уходит «в никуда». Словить небольшую ее долю и использовать для личных нужд — вот задача, которую решают все эти приспособления.

Ветрогенераторы

Альтернативные источники энергии хороши тем, что они по большей части относятся к возобновляемым ресурсам. Самый вечный, наверное, ветер. Пока есть атмосфера и солнце, ветер тоже есть. Может какой-то непродолжительный период воздух и будет неподвижным, но очень недолго. Наши предки использовали энергию ветра в мельницах, а современный человек преобразует ее в электричество. Все что для этого требуется:

  • вышка, установленная в ветреном месте;
  • генератор с приделанными к нему лопастями;
  • накопительной батареи и системы распределения электрического тока.

Вышка строится любая, из любого материала. Накопительная батарея — аккумулятор, тут ничего не придумаешь, а куда подавать электричество — ваш выбор. Остается только сделать генератор. Его тоже можно купить уже готовым, но вполне можно сделать из двигателя от бытовой техники — стиральной машины, шуруповерта и т.п. Нужны будут неодимовые магниты и эпоксидная смола, токарный станок.

Схема обеспечения частного дома электричеством за счет альтернативных источников энергии (ветрогенератор и солнечные батареи)

На роторе мотора размечаем места под установку магнитов. Они должны находится на равном расстоянии друг от друга. Ротор выбранного мотора обтачиваем, формируя «посадочные места». Дно выемки должно иметь небольшой наклон, чтобы поверхность магнита была наклонена. В выточенные места на жидкие гвозди приклеиваются магниты, заливаются эпоксидной смолой. Поверхность затем наждачной бумагой доводится до гладкости. Далее надо приделать щетки, которые будут снимать ток. И все, можно собирать и запускать ветрогенератор.

Такие установки довольно эффективны, но их мощность зависит от многих факторов: интенсивности ветра, того, насколько правильно сделан генератор, насколько эффективно снимается разность потенциала щетками, от надежности электрических соединений и т.п.

Тепловые насосы для отопления дома

Тепловые насосы используют все имеющиеся в наличии альтернативные источники энергии. Они отбирают тепло у воды, воздуха, грунта. В небольших количествах это тепло есть там даже зимой, вот его и собирает тепловой насос и перенаправляет на обогрев дома.

Тепловые насосы также используют альтернативные источники энергии — тепло земли, воды и воздуха

Принцип работы

Чем же так привлекательны тепловые насосы? Тем, что затратив 1 кВт энергии на ее перекачку, в самом плохом варианте вы получите 1,5 кВт тепла, а самые удачные реализации могут дать до 4-6 кВт. И это никак не противоречит закону сохранения энергии, ведь расходуется энергия не на получение тепла, а не его перекачивание. Так что никаких нестыковок.

Схема теплового насоса для использования альтернативных источников энергии

У тепловых насосов есть три рабочих контура: два наружных и они внутренний, а также испаритель, компрессор и конденсатор. Работает схема так:

  • В первом контуре циркулирует теплоноситель, который отбирает тепло у низкопотенциальных источников. Он может быть опущен в воду, закопан в землю, а может отбирать тепло у воздуха. Самая высокая температура, которая достигается в этом контуре — около 6°C.
  • Во внутреннем контуре циркулирует теплоноситель с очень низкой температурой кипения (обычно 0°C). Нагревшись, хладагент испаряется, пар попадает в компрессор, где сжимается до высокого давления. При сжатии выделяется тепло, пары хладагента разогреваются до температуры в среднем от +35°C до +65°C.
  • В конденсаторе тепло передается теплоносителю из третьего — отопительного — контура. Остывающие пары конденсируются, затем дальше попадают в испаритель. И далее цикл повторяется.

Отопительный контур лучше всего делать в виде теплого пола. Температуры для этого самые подходящие. Для радиаторной системы потребуется слишком большое число секций, что некрасиво и невыгодно.

Альтернативные источники тепловой энергии: откуда и как брать тепло

Но самые большие сложности вызывает устройство первого внешнего контура, который собирает тепло. Так как источники низкопотенциальные (тепла у низ мало), то для сбора его в достаточном количестве требуются большие площади. Есть четыре вида контуров:

  • Кольцами уложенные в воде трубы с теплоносителем. Водоем может быть любым — река, пруд, озеро. Главное условие — он не должен промерзать насквозь даже в самые сильные морозы. Более эффективно работают насосы, выкачивающие тепло из речки, в стоячей воде тепла передается намного меньше. Такой источник тепла реализуется проще всего — закинуть трубы, привязать груз. Только велика вероятность случайного повреждения.

    В воде сделать термальное поле проще всего

  • Термальные поля с закопанными ниже глубины промерзания трубами. В этом случае недостаток один — большие объемы земляных работ. Приходится снимать грунт на большой площади, да еще на солидную глубину.

    Большой объем земляных работ

  • Использование геотермальных температур. Бурят некоторое количество скважин большой глубины, в них опускают контура с теплоносителем. Чем хорош этот вариант — мало места требует, но не везде есть возможность бурить на большие глубины, да и услуги буровых стоят немало. Можно, правда, сделать буровую установку самостоятельно, но работа все равно нелегкая.

    Со скважинами требуется меньше места

  • Извлечение тепла из воздуха. Так работают кондиционеры с возможностью обогрева — отбирают тепло у «забортного» воздуха. Даже при минусовой температуре такие агрегаты работают, правда при не очень «глубоком» минусе — до -15°C. Чтобы работа была интенсивнее, можно использовать тепло от вентиляционных шахт. Закинуть туда несколько переть с теплоносителем и качать оттуда тепло.

    Самые компактные, но и самые нестабильные тепловые насосы, отбирающие тепло у воздуха

Основной недостаток тепловых насосов — высокая цена самого насоса, да и монтаж полей сбора тепла обходится недешево. На этом деле можно сэкономить, сделав насос самостоятельно и также своими руками уложив контура, но сумма все равно останется немалой. Плюс в том, что отопление будет недорогим а действовать система будет долго.

Отходы в доходы: биогазовые установки

Все альтернативные источники энергии имеют природное происхождение, но получать двойную выгоду можно только от биогазовых установок. В них перерабатываются отходы жизнедеятельности домашних животных и птицы. В результате получается некоторый объем газа, который после очищения и осушения можно использовать по прямому назначению. Оставшиеся переработанные отходы можно продать или использовать на полях для повышения урожайности — получается очень эффективное и безопасное удобрение.

Из навоза тоже можно получать энергию, только не в чистом виде, а в виде газа

Коротко о технологии

Образование газа происходит при брожении, и участвуют в этом бактерии, живущие в навозе. Для выработки биогаза подходят отходы любого скота и птицы, но оптимален навоз КРС. Его даже добавляют к остальным отходам для «закваски» — в нем содержатся именно нужные для переработки бактерии.

Для создания оптимальных условий необходима анаэробная среда — брожение должно проходить без доступа кислорода. Потому эффективные биореакторы — закрытые емкости. Чтобы процесс шел активнее, необходимо регулярное перемешивание массы. В промышленных установках для этого устанавливаются мешалки с электроприводами, в самодельных биогазовых установках это обычно механические устройства — от простейшей палки до механических мешалок, которые «работают» от силы рук.

Принципиальная схема биогазовых установок

В процессе образования газа из навоза участвуют два типа бактерий: мезофильные и термофильные. Мезофильные активны при температуре от +30°C до +40°C, термофильные — при +42°C до +53°C. Более эффективно работают термофильные бактерии. При идеальных условиях выработка газа с 1 литра полезной площади может достигать 4-4,5 литров газа. Но поддерживать в установке температуру в 50°C очень непросто и затратно, хотя затраты себя оправдывают.

Немного о конструкциях

Самая простая биогазовая установка — это бочка с крышкой и мешалкой. В крышке сделан вывод для подключения шланга, по которому газ поступает в резервуар. От такого объема много газа не получите, но на одну-две газовые горелки его хватит.

Более серьезные объемы можно получить от подземного или надземного бункера. Если речь о подземном бункере, то его делают из железобетона. Стенки от грунта отделяют слоем теплоизоляции, саму емкость можно разделить на несколько отсеков, в которых будет происходить переработка со сдвигом во времени. Так как работают в таких условиях обычно мезофильные культуры, весь процесс занимает от 12 до 30 дней (термофильные перерабатывают за 3 дня), потому сдвиг по времени желателен.

Схема бункерной биогазовой установки

Навоз поступает через бункер загрузки, с противоположной стороны делают люк выгрузки, откуда отбирают переработанное сырье. Заполняется бункер биосмесью не полностью — порядка 15-20% пространства остается свободным — тут скапливается газ. Для его отвода в крышку встраивается трубка, второй конец которой опускается в гидрозатвор — емкость частично заполненную водой. Таким образом газ осушается — в верхней части собирается уже очищенный, он отводится при помощи другой трубки и уже может подавиться к потребителю.

Использовать альтернативные источники энергии может каждый. Владельцам квартир осуществить это сложнее, а вот в частном доме можно хоть все идеи реализовать. Есть уже даже реальные примеры того. Люди обеспечивают полностью потребности свои и немалого хозяйства.

Виды альтернативной энергетики

В зависимости от источника энергии, который в результате преобразования позволяет получать человеку электрическую и тепловую энергии, используемые в повседневной жизни, альтернативная энергетика классифицируется на несколько видов, определяющих способы ее генерации и типы установок служащих для этого.

Энергия солнца

Солнечная энергетика основана на преобразовании энергии солнца, в результате которого получается электрическая и тепловая энергии.

Получение электрической энергии основано на физических процессах, происходящих в полупроводниках под воздействием солнечных лучей, получение тепловой – на свойствах жидкостей и газов.

Для генерации электрической энергии комплектуются солнечные электростанции, основой которой служат солнечные батареи (панели), изготавливаемые на основе кристаллов кремния.

Основой тепловых установок — служат солнечные коллекторы, в которых энергия солнца преобразуется в тепловую энергию теплоносителя.

Мощность подобных установок зависит от количества и мощности отдельных устройств, входящих в состав тепловых и солнечных станций.

Энергия ветра

Ветровая энергетика основана на преобразовании кинетической энергии воздушных масс в электрическую энергию, используемую потребителями.

Основой ветровых установок служит ветровой генератор. Ветровые генераторы различаются по техническим параметрам, габаритным размерам и конструкции: с горизонтальной и вертикальной осью вращения, различным типом и количеством лопастей, а также по месту их расположения (наземное, морское и т.д.).

Сила воды

Гидроэнергетика основана на преобразовании кинетической энергии водных масс в электрическую энергию, которая также используемую человеком в своих целях.

К объектам данного вида относятся гидроэлектростанции различной мощности, устанавливаемых на реках и иных водных объектах. В таких установках, под воздействием естественного течения воды, или путем создания плотины, вода воздействует на лопасти турбины вырабатывающей электрический ток. Гидротурбина, является основой гидроэлектростанций.

Еще один способ получения электрической энергии путем преобразования энергии воды – это использование энергии приливов, посредством строительства приливных станций. Работа таких установок основана на использовании кинетической энергии морской воды в период приливов и отливов, происходящих в морях и океанах под воздействием объектов солнечной системы.

Тепло земли

Геотермальная энергетика, основана на преобразовании тепла, излучаемого поверхностью земли, как в местах выброса геотермальных вод (сейсмически опасные территории), так и в иных регионах нашей планеты.

Для использования геотермальных вод используются специальные установки, посредством которых внутреннее тепло земли преобразуется в тепловую и электрическую энергии.

Использования теплового насоса позволяет получать тепло из поверхности земли, вне зависимости от места его расположения. Его работа основана на свойствах жидкостей и газов, а также законах термодинамики.

Тепловые насосы различаются по мощности и своей конструкции, зависящей от первичного источника энергии, определяющей их тип, это системы: «грунт-вода» и «вода-вода», «воздух-вода» и «грунт-воздух», «вода-воздух» и «воздух-воздух», «фреон-вода» и «фреон-воздух».

Биотопливо

Виды биотоплива различаются по способам его получения, его агрегатному состоянию (жидкое, твердое, газообразное) и видам использования. Объединяющим все виды биотоплива показателем, служит то, что основой для их производства служат органические продукты, посредством переработки которых получается электрическая и тепловая энергии.

Твердые виды биотоплива — это дрова, топливные брикеты или пеллеты, газообразные – это биогаз и биоводород, а жидкие – биоэтанол, биометанол, биобутанол, диметиловый эфир и биодизель.

Альтернативные источники энергии в России

В нашей стране, как и во многих технически развитых странах мира, использованию альтернативных источников энергии уделяется особое внимание. Это обусловлено большими территориями, на которых и в настоящее время нет централизованных источников энергии, а также общемировой тенденцией, связанной с борьбой за экологию планеты и экономией традиционных видов топлива.

В разных регионах страны получили развитие разные виды альтернативной энергетики. Это связано с географическим положением и возможностью использования того или иного первичного источника получения энергии.

Солнечная энергетика

Солнечные электростанции в настоящее время, получают все большее распространение среди различных слоев населения, как альтернативный или резервный источник электрической и тепловой энергии.

В промышленных масштабах, данный вид энергетики, также присутствует в нашей стране.

Общая установленная мощность солнечных электростанций превышает 400,0 МВт, из них наиболее крупными являются:

  • Орская им. А. А. Влазнева, установленной мощностью 40,0 МВт в Оренбургской области;
  • Бурибаевская, мощностью 20,0 МВт и Бугульчанская, мощностью 15,0 МВт, в Республике Башкортостан;
  • На полуострове Крым функционирует более десяти солнечных электростанций мощностью 20,0 МВт каждая.

На стадии разработки проектной документации и различных этапах строительства, находятся более 50 объектов солнечной генерации, расположенных в различных регионах, от Дальнего Востока и Сибири, до центральных и южных областей нашей страны.

Общая мощность проектируемых и строящихся объектов составляет более 850,0 МВт.

Ветровая энергетика

Ветровые энергетические установки, работающие для получения электрической энергии в промышленных масштабах, также существуют на территории нашей страны, хотя их доля, в общей мощности энергетической системы, значительно ниже, чем солнечных электростанций.

Общая установленная мощность ветровых генераторов составляет немногим больше 100,0 МВт, из них наиболее мощные, это:

  • Зеленоградская ветровая установка, мощностью 5,1 МВт, расположенная в Калининградской области;
  • Останинская (25,0 МВт), Тарханкутская (22,0 МВт) и Сакская (20,0 МВт) – на полуострове Крым.

На стадии проектирования и строительства, находятся 22 ветровые энергетические установки, общей мощностью более 2500,0 МВт.

Гидроэнергетика

Этот вид альтернативной энергетики наиболее распространен на территории России. В настоящее время доля вырабатываемой электрической энергии ГЭС установленными на реках, в разных регионах страны, превышает 20,0 % от общей генерации всей энергосистемы РФ.

Суммарная установленная мощность гидроэлектростанций, на начало 2017 года, составляет 48085,94 МВт, а их количество – 191объект генерации, различной мощности и конструкции.

Энергию приливов также используют в нашей стране, для производства электрической энергии. В Мурманской области со второй половины ХХ века работает Кислогубская приливная электростанция, которая в 2007 году была реконструирована и в настоящее время, ее установленная мощность составляет 1,7 МВт.

В настоящее время ведется разработка экономического обоснования и проектной документации по строительству подобных станций в Охотском (Пенжинская и Тугурская ПЭС) и Белом (Мезенская) морях.

Геотермальная энергетика

Энергия недр нашей планеты, ее тепло, широко используется в ряде стран, где присутствует вулканическая деятельность. В нашей стране, этот вид энергетики, в силу ее особенностей, распространен на Дальнем Востоке.

В настоящее время успешно работает 5 геотермальных электрических станций установленной мощностью 80,1 МВт, три из которых расположены на Камчатке (Мутновская, Паужетская и Верхне-Мунтовская) и по одной на островах Кунашир (Менделеевская) и Итуруп (Океанская).

Использование биотоплива

Данный вид энергоресурсов не так широко распространен, как традиционные виды топлива или гидроэнергетика. Тем не менее, в связи с тем, что в нашей стране развита лесная и деревообрабатывающая промышленности и большие территории заняты выращиванием сельскохозяйственных культур, то и на этот вид энергетики обращается все большее внимание.

Последние годы построено большое количество заводов по переработке отходов древесины, из которых изготавливаются топливные брикеты и гранулы (пеллеты). Брикеты и пеллеты, в свою очередь, используются в качестве топлива для различного типа котлов в результате сжигания которых, вырабатывается тепловая и электрическая энергии.

Из отходов сельскохозяйственных культур производится биогаз и жидкое топливо для дизельных двигателей и установок, где они сжигается, в результате чего осуществляется производство тепловой и электрической энергий.

Данный вид топлива не получил широкого распространения в нашей стране, но тем не менее перспективы его развития, достаточно обширны и успешны.

Использование для частного дома

Использование альтернативных источников для отопления загородного дома или дачи, а также для его электроснабжения, может быть осуществлено достаточно успешно. В этом случае все зависит от региона проживания пользователя и места расположения объекта потребления энергии.

Способность вырабатывать электрический ток солнечными станциями и ветровыми установками зависит от активности солнца и скорости ветра в месте их размещения, а также прочих погодных явлений, характеризующих этот регион.

Устройство микро ГЭС возможно только при наличии вблизи объекта потребления реки или иного водоема, а геотермальной станции – при присутствии близко расположенных к поверхности земли геотермальных вод.

Биотопливо в виде дров и продуктов отходов деревопереработки, возможно в регионах страны богатых лесами, с развитой промышленностью данного направления.

Получение биогаза и жидкого топлива — доступно там, где большие территории отведены под выращивание сельскохозяйственных культур, что позволяет иметь большой запас биомассы, используемой для производства этих видов топлива.

Можно ли сделать своими руками в домашних условиях

При наличии свободного времени, желания, а также умения работать ручным инструментом, можно создать установки, с помощью которых использовать альтернативные источники для своих нужд, как в виде электрической, так и тепловой энергии.

Это касается всех выше перечисленных видов альтернативной энергетики, так для:

  • Солнечных электростанций – можно самостоятельно изготовить солнечные батареи, используя фотоэлементы заводского производства, а также собрать контроллер заряда и инвертор, являющиеся элементами таких установок.
  • Ветровых установок – также, как и для солнечных станций, электронные устройства (контроллер, инвертор) собираются достаточно просто с использованием существующих электрических схем и из элементов заводского производства. Самый важный элемент, ветрогенератор – можно изготовить из имеющихся запасных частей и материалов.
  • Микро ГЭС – изготовить и смонтировать может каждый, если есть река или водоем, где можно соорудить плотину. Конструкция и вид гидротурбины, зависят от типа водоема и рельефа местности.
  • Биогазовую установку – создать не составит труда любому сельскому жителю, условиями для этого будут – наличие необходимого количества биомассы и температура окружающего воздуха, позволяющая происходить процессу ее брожения.

Направления альтернативной энергетики

Альтернативный источник энергии

Основным направлением альтернативной энергетики является поиск и использование альтернативных (нетрадиционных) источников энергии. Источники энергии — «встречающиеся в природе вещества и процессы, которые позволяют человеку получить необходимую для существования энергию». Альтернативный источник энергии является возобновляемым ресурсом, он заменяет собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле, которые при сгорании выделяют в атмосферу углекислый газ, способствующий росту парникового эффекта и глобальному потеплению. Причина поиска альтернативных источников энергии — потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений. Во внимание может браться также экологичность и экономичность.

Классификация источников

Источники энергии, используемые человеком

Способ использования Энергия, используемая человеком Первоначальный природный источник
Солнечные электростанции Электромагнитное излучение Солнца Солнечный ядерный синтез
Ветряные электростанции Кинетическая энергия ветра Солнечный ядерный синтез,

Движения Земли и Луны

Традиционные ГЭС

Малые ГЭС

Движение воды в реках Солнечный ядерный синтез
Приливные электростанции Движение воды в океанах и морях Движения Земли и Луны
Волновые электростанции Энергия волн морей и океанов Солнечный ядерный синтез,

Движения Земли и Луны

Геотермальные станции Тепловая энергия горячих источников планеты Внутренняя энергия Земли
Сжигание ископаемого топлива Химическая энергия ископаемого топлива Солнечный ядерный синтез в прошлом.
Сжигание возобновляемого топлива традиционное нетрадиционное Химическая энергия возобновляемого топлива Солнечный ядерный синтез
Атомные электростанции Тепло, выделяемое при ядерном распаде Ядерный распад

Примечания

  1. Зелёным шрифтом обозначены нетрадиционные способы использования энергии.
  2. Зелёным цветом залиты возобновляемые источники энергии.

Ветроэнергетика

В последнее время многие страны расширяют использование ветроэнергетических установок (ВЭУ). Больше всего их используют в странах Западной Европы (Дания, ФРГ, Великобритания, Нидерланды), в США, в Индии, Китае. Дания получает 25 % энергии из ветра

  • Автономные ветрогенераторы
  • Ветрогенераторы, работающие параллельно с сетью

Биотопливо

  • Жидкое: Биодизель, биоэтанол.
  • Твёрдое: древесные отходы и биомасса (щепа, гранулы (топливные пеллеты) из древесины, лузги, соломы и т. п., топливные брикеты)
  • Газообразное: биогаз, синтез-газ.

Гелиоэнергетика

Солнечные электростанции (СЭС) работают более чем в 80 странах.

  • Солнечный коллектор, в том числе Солнечный водонагреватель, используется как для нагрева воды для отопления, так и для производства электроэнергии.
  • Энергетическая башня, совмещает солнечную и ветроэнергетику. Есть два варианта. Первый — охлаждение нагретого солнцем воздуха на высоте нескольких сотен метров и преобразование кинетической энергии нисходящих потоков воздуха в электроэнергию. Второй — нагревание солнцем почвы и воздуха в очень большом парнике и преобразование кинетической энергии восходящего потока воздуха в электроэнергию.
  • Фотоэлектрические элементы
  • Наноантенны

Альтернативная гидроэнергетика

Российский волновой генератор
«Ocean 160»

  • Приливные электростанции (ПЭС) пока имеются лишь в нескольких странах — Франции, Великобритании, Канаде, России, Индии, Китае, Южной Корее, Норвегии
  • Волновые электростанции.
  • Мини и микро ГЭС (устанавливаются в основном на малых реках).
  • Энергия температурного градиента морской воды
  • Аэро ГЭС (конденсация влаги из атмосферы, в том числе из облаков) — работают опытные установки.

Геотермальная энергетика

Используется как для нагрева воды для отопления, так и для производства электроэнергии. На геотермальных электростанциях вырабатывают немалую часть электроэнергии в странах Центральной Америки, на Филиппинах, в Исландии; Исландия также являет собой пример страны, где термальные воды широко используются для обогрева, отопления.

  • Тепловые электростанции (принцип отбора высокотемпературных грунтовых вод и использования их в цикле)
  • Грунтовые теплообменники (принцип отбора тепла от грунта посредством теплообмена)

Мускульная сила человека

Хотя мускульная сила является самым древним источником энергии, и человек всегда стремился заменить её чем-то другим, в настоящее время её значение растёт вместе с ростом использования транспортных средств на мускульной тяге — велосипед, самокат, веломобиль и т.п.

Грозовая энергетика

Грозовая энергетика — это способ использования энергии путём поимки и перенаправления энергии молний в электросеть. Компания Alternative Energy Holdings в 2006 году объявила о создании прототипа модели, которая может использовать энергию молнии. Предполагалось, что эта энергия окажется значительно дешевле энергии, полученной с помощью современных источников, окупаться такая установка будет за 4—7 лет.

Криоэнергетика

Криоэнергетика — это способ аккумулирования избыточной энергии посредством сжижения воздуха.

В промышленной зоне Слау построена первая в мире 300-киловаттная криогенная аккумулирующая электростанция .

В феврале 2011 года от Highview Power Storage отсоединился стартап Dearman Engine, занимающийся разработкой криогенных двигателей .

В ВМФ Швеции субмарины типа «Готланд» стали первыми серийными лодками с двигателями Стирлинга, которые позволяют им находиться под водой непрерывно до 20 суток. В настоящее время все подводные лодки ВМС Швеции оснащены двигателями Стирлинга, а шведские кораблестроители уже хорошо отработали технологию оснащения этими двигателями подводных лодок, путём врезания дополнительного отсека, в котором и размещается новая двигательная установка. Двигатели работающие на жидком кислороде, который используется в дальнейшем для дыхания, имеют очень низкий уровень шума.

Гравитационная энергетика

Гравитационная энергетика — аккумулирование избыточной энергии посредством запасания её в виде потенциальной энергии гравитационного поля.

Компания Energy Vault разработала проект гравитационной аккумулирующей электростанции, представляющей из себя подъемный кран с шестью стрелами, электродвигатели которого работают как электрогенераторы при спуске блоков, и поставленные друг на друга блоки. Когда в электросеть поступает избыточная энергия, она тратится на поднятие блоков. А в часы-пик, при спуске блоков кранами, энергия возвращается в сеть .

Управляемый термоядерный синтез

Синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который носит управляемый характер. До сих пор не применяется.

Направления альтернативной энергетики помимо использования нетрадиционных источников энергии

Распределённое производство энергии

Новая тенденция в энергетике, связанная с производством тепловой и электрической энергии.

Водородная энергетика

На сегодняшний день для производства водорода требуется больше энергии, чем возможно получить при его использовании, поэтому считать его источником энергии нельзя. Он является лишь средством хранения и доставки энергии.

  • Водородные двигатели (для получения механической энергии)
  • Топливные элементы (для получения электричества)
  • Биоводород

Космическая энергетика

Получение электроэнергии в фотоэлектрических элементах, расположенных на околоземной орбите или на Луне. Электроэнергия будет передаваться на Землю в форме микроволнового излучения. Может способствовать глобальному потеплению. До сих пор не применяется.

Перспективы

Перспективы использования возобновляемых источников энергии связаны с их экологической чистотой, низкой стоимостью эксплуатации и ожидаемым топливным дефицитом в традиционной энергетике.

По оценкам Европейской комиссии к 2020 году в странах Евросоюза в индустрии возобновляемой энергетики будет создано 2,8 миллионов рабочих мест. Индустрия возобновляемой энергетики будет создавать 1,1 % ВВП.

Перспективы в России

См. также: Энергетика России

Россия может получать 10 % энергии из ветра.

По сравнению с США и странами ЕС использование возобновляемых источников энергии (ВИЭ) в России находится на низком уровне. Сложившуюся ситуацию можно объяснить доступностью традиционных ископаемых энергоносителей. Также, один из основных барьеров для строительства крупных электростанций на ВИЭ — отсутствие положения о стимулирующем тарифе, по которому государство покупало бы электроэнергию, производимую на основе ВИЭ (feed-in tariff).

В 2017 году администрация городского округа Химки запустила проект по созданию Центра альтернативной энергетики, который будет разрабатывать новые схемы обеспечения электроэнергией промышленных предприятий и городского хозяйства. Центр будет организован на базе расположенного на Ленинградском шоссе дилерского центра садово-парковой техники «Юнисоо».

Нетрадиционные (возобновляемые) источники энергии

Бахматов Дмитрий

класс 10, МОУ СОШ №8 Советского района г. Волгограда

Попова Нина Ивановна

научный руководитель, педагог высшей категории, преподаватель физики, МОУ СОШ № 8 г. Волгограда

Вступление

Нетрадиционными источниками энергии являются солнце, ветер, океанические приливы, тепло земных глубин. Эти варианты получения энергии как дополнительной используются в последнее время всё чаще. Многие учёные убеждены, что к 2030—2050 гг. нетрадиционные (возобновляемые) источники энергии будут основными, а традиционные потеряют своё значение.

Цель статьи: познакомиться с нетрадиционными источниками энергии, их достоинствами и недостатками, а также выяснить для себя перспективы внедрения возобновляемых источников энергии на территории Волгоградской области.

Сегодня подавляющее большинство людей знают о том, что запасы углеводородов не беспредельны, что органическое топливо нужно беречь. Вот почему изучение и использование нетрадиционных источников энергии является актуальным. Многие страны довольно широко используют нетрадиционные источники. Уже несколько лет в Волгоградской области внедряются энергосберегающие установки с использованием энергии ветра, солнца, гидроресурсов, отходов сельского хозяйства, так как этому способствуют географическое положение и климатические условия нашего региона.

Солнечная энергия

Солнечная энергия неисчерпаема. Существует несколько вариантов её использования. При физических способах усвоения солнечной энергии используют гальванические батареи, которые поглощают её и преобразуют в тепловую или электрическую энергию, либо системы зеркал, отражающих лучи солнца и направляющих их на заполненные маслом трубы, которые концентрируют солнечное тепло. Волгоградская область находится на юге нашей страны, значит, в перспективе нехватку энергии без проблем можно компенсировать за счёт солнечной энергии. А вот жителям Крайнего Севера, Сибири, Якутии и т. д. в этом плане сложнее. Я считаю, что в этой местности как раз можно использовать солнечные коллекторы для обеспечения населения электроэнергией, особенно летом. Использование солнечных коллекторов может частично решить экологическую проблему и использовать энергию для бытовых нужд (подогрев воды, обогрев теплиц и т. д.). Наиболее успешно солнечная энергетика развивается в Японии и Израиле, где за её счёт почти полностью покрывается потребность в отоплении жилья и подогреве воды для бытовых нужд. «Совместный алжирско-японский проект SaharaSolarBreederобещает превратить пустыню Сахара в чащу солнечных батарей, способных к 2050 г. обеспечить до половины мировых потребностей в электроэнергии» . В принципе солнечную энергию можно использовать в любом уголке земли.

Одним из наиболее перспективных источников энергии на Земле является биомасса, так как она доступна в неограниченных количествах. Биомасса делится на первичную и вторичную.

Древесину, отходы сельскохозяйственного производства, высушенные водоросли, которые перерабатываются в спирт и т. д., затем используют для получения энергии. Биологическим вариантом использования солнечной энергии является и получение биогаза из навоза, который сбраживается без доступа воздуха. В настоящее время в мире накопилось много мусора, который ухудшает состояние окружающей среды. Мусор губительно влияет на людей, животных, птиц, на всё живое на земле. Такие свалки находятся вблизи моего пос. Горьковский Советского района г. Волгограда: за железнодорожной горкой вдоль Ростовской трассы перед селом Рогачик, в балке с. Песчанка, на ст. Бирюзовая и т. д. Много стихийных свалок образовалось вдоль балок устья реки Царица. Подобных свалок огромное количество во всех как крупных, так и мелких городах и селениях нашей страны. В связи с этим, я думаю, что нужно развивать энергетику с использованием вторичной биомассы, чтобы предотвратить загрязнение окружающей среды. У меня появилась мысль исследовать свалки посёлка, выяснить, сколько мусора вывозится и сколько его нужно, чтобы обеспечить мой посёлок электроэнергией, полученной от сжигания мусора. Мои расчеты показали, что пос. Горьковский сможет себя обеспечить энергией биомассы за счёт своего же мусора. Причём с биомассой практически весь мусор будет сжигаться, и отходов почти нет. Так будет решена проблема уничтожения мусора и обеспечения посёлка электроэнергией при минимальных затратах. Прекрасно можно решить эту проблему и в других городах, что уже решается успешно в западных странах. В ходе исследования мною был проведён небольшой социологический опрос среди населения пос. Горьковский, результаты которого показали, что большинство участников опроса положительно относятся к использованию энергии биомассы.

Преимущества биоэнергии

Это возобновляемая энергия, которая не увеличивает концентрацию углекислого газа в атмосфере, решает проблему использования отходов (мусора), а, значит, помогает улучшить экологию и сделать мир чище.

Солнечную радиацию при помощи гелиоустановок преобразуют в тепловую или электрическую энергию, удобную для практического применения. В южных районах нашей страны созданы десятки солнечных установок и систем.

Достоинства солнечной энергетики

Достоинства солнечной энергетики заключаются в общедоступности и неисчерпаемости источника, в полной безопасности для окружающей среды, это экологически чистый источник энергии, что очень важно именно теперь.

Недостатки солнечной энергетики

Из-за относительно небольшой величины солнечной постоянной для солнечной энергетики требуется использование больших площадей земли под электростанции (например, для электростанции мощностью 1 ГВт это может быть несколько десятков квадратных километров). Поток солнечной энергии на поверхности Земли сильно зависит от широты и климата. В разных местах среднее количество солнечных дней в году может различаться очень сильно. Солнечная электростанция не работает ночью и недостаточно эффективно работает в утренних и вечерних сумерках.

Использование энергии ветра

Человечество научилось использовать энергию ветра на ранней стадии своего развития. Ветряные электростанции производят электроэнергию только тогда, когда дует достаточно сильный ветер. Современный ветряк — сложное устройство. В нём запрограммирована работа в двух режимах — слабого и сильного ветра и остановка двигателя, если ветер станет очень сильным. Недостатком ветряных двигателей являются шумы, которые производят лопасти пропеллера во время вращения. Если ветряк мощный, то шумовое загрязнение делает опасным длительное пребывание людей в зоне работы установки. Наиболее оправданы небольшие ветряки для обеспечения дешевой и экологически безопасной электроэнергией отдельных ферм, дачных участков. К числу передовых стран по использованию энергии ветра относятся: Германия, Дания, Испания, США. В России за последние 5 лет построено несколько ветроэнергетических установок: в Башкирии, в Калининградской области, на Командорских островах, в Мурманске. Перспективно использование ветроустановок в Калмыцких степях, граничащих с Волгоградской областью, так как там ветры дуют, как правило, постоянно и только в одном направлении. В настоящее время там довольно широко используются ветроустановки для обеспечения электроэнергией небольших населённых пунктов Колмыкии. По окраинам Волгограда тоже расположены ветряки местного назначения. Автономные ветроэлектроустановки появились в удалённом от электрических сетей пос. Осипово Калачёвского района, на чабанских точках Волгоградской области. Обсуждается проект первого в России ветропарка мощностью 1 ГВт, который будет построен в Волгоградской области. Общая мощность ветроагрегатов в России превысила 10 МВт.Простейший способ использования энергии ветра впрок состоит в том, что ветряное колесо движет насос, который накапливает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие водяную турбину и генератор постоянного или переменного тока. «Особенно перспективно развитие ветроэнергетики в комплексе с другими возобновляемыми источниками для энергоснабжения изолированных населённых пунктов, удалённых от других энергоисточников» .

Недостатки ветровой энергетики

Прежде всего, ветроустановки неблагоприятно влияют на работу телевизионной сети. Другая особенность ветровых установок проявилась в том, что они оказались источником достаточно интенсивного инфразвукового шума, неблагоприятно действующего на человеческий организм, вызывающего постоянное угнетенное состояние, сильное беспричинное беспокойство и жизненный дискомфорт.

Достоинства ветровой энергетики

Отсутствие влияния на тепловой баланс атмосферы Земли, потребления кислорода, выбросов углекислого газа и т. д. Возможность преобразования в различные виды энергии (механическую, тепловую, электрическую). Непредсказуемые изменения скорости ветра в течение суток и сезона.

Приливные электростанции (ПЭС)

«За счёт использования энергии приливов в России можно покрывать более 25 % текущего энергопотребления страны» .Для выработки электроэнергии электростанции такого типа используют энергию прилива. Первая такая электростанция (Паужетская) мощностью 5 МВт была построена на Камчатке. Для устройства простейшей приливной электростанции нужен бассейн, перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены гидротурбины, которые вращают генератор. По принципу действия гидравлические турбины подразделяют на: активные и реактивные; по конструкции — на вертикальные и горизонтальные. Мощность гидрогенераторов от нескольких десятков до нескольких сотен МВт. Во время прилива вода поступает в бассейн. Когда уровни воды в бассейне и море сравняются, затворы водопропускных отверстий закрываются. С наступлением отлива уровень воды в море понижается, и когда напор становится достаточным, турбины и соединенные с ним электрогенераторы начинают работать, а вода из бассейна постепенно уходит. В России c 1968 года действует «экспериментальная» ПЭС в Кислой губе на побережье Баренцева моря мощностью 0,4 МВт. Это первая и пока единственная приливная электростанция в России. В 2006 году на станции был установлен опытный образец наплавного блока, на котором расположен оригинальный гидроагрегат ОГА-5 мощностью 1,5 МВт.»Начиная с 1966 года, два французских города полностью удовлетворяют свои потребности в электроэнергии за счёт приливных электростанций» . В Урюпинском районе Волгоградской области для освещения наплавного моста через Хопёр была построена мини-ГЭС волнового типа, работающая на энергии течения воды. Наличие Волги, Дона и малых рек диктует грамотное использование гидроресурсов Волгоградской области.

Недостатки приливных электростанций

Они нарушают нормальный обмен соленой и пресной воды и тем самым — условия жизни морской флоры и фауны. Влияют они и на климат, поскольку меняют энергетический потенциал морских вод, их скорость и территорию перемещения. Морские теплостанции, построенные на перепаде температур морской воды, способствуют выделению большого количества углекислоты, нагреву и снижению давления глубинных вод и остыванию поверхностных. А процессы эти не могут не сказаться на климате, флоре и фауне региона.

Достоинства приливных электростанций

Преимуществами ПЭС является экологичность и низкая себестоимость производства энергии. Не загрязняет атмосферу. Дешёвая и возобновляемая энергия. Сокращает уровень добычи, транспортировки и сжигания органического топлива.

Использование геотермальных источников

В этом случае подразумевается использование тепла земных глубин (глубинных горячих источников). Это тепло можно использовать практически в любом районе, но затраты окупаются только там, где горячие воды приближены к поверхности земной коры. Это районы активной вулканической деятельности и гейзеров, например, Камчатка, Курилы, острова Японского архипелага, Исландия, Новая Зеландия.Источники геотермальной энергии могут быть двух типов. Первый тип — это подземные бассейны естественных теплоносителей — горячей воды (гидротермальные источники), или пара (паротермальные источники), или пароводяной смеси. По существу, это непосредственно готовые к использованию «подземные котлы», откуда воду или пар можно добыть с помощью обычных буровых скважин. Второй тип — это тепло горячих горных пород. Это даёт возможность получить пар или перегретую воду для дальнейшего использования в энергетических целях. Но в обоих вариантах использования главный недостаток заключается в очень слабой концентрации геотермических аномалий, где горячие источники или породы подходят сравнительно близко к поверхности и где при погружении вглубь на каждые 100 м температура повышается на 30—40°С, концентрации геотермальной энергии могут создавать условия и для хозяйственного её использования.

Преимущества геотермальных источников

Во-первых, их запасы практически неисчерпаемы. По оценкам конца 70-х годов до глубины 10 км они составляют такую величину, которая в 3,5 тысячи раз превышает запасы традиционных видов минерального топлива. Считаю, что эта цифра в последнее время изменилась в сторону увеличения. Во-вторых, геотермальная энергия довольно широко распространена. Концентрация её связана в основном с поясами активной сейсмической и вулканической деятельности, которые занимают 1/10 площади Земли. А это не так уж и мало.

Недостатки геотермальных источников

Главная проблема заключается в необходимости обратной закачки отработанной воды в подземный водоносный горизонт. В термальных водах содержится большое количество солей различных токсичных металлов (бора, свинца, цинка, кадмия, мышьяка) и химических соединений (аммиака, фенолов), что исключает сброс этих вод в природные водные системы, расположенные на поверхности, так как эти вещества оказывают губительное действие на всё живое на земле.

Заключение

Я пришёл к выводу, что нетрадиционную энергетику необходимо внедрять в жизнь. В современном обществе трудно найти хотя бы одну область человеческой деятельности, которая не требовала бы использования энергии. Потребление электроэнергии — важный показатель жизненного уровня. Трудно переоценить значение и перспективы использования возобновляемых источников энергии в современном мире. Пока у нас есть солнечный свет, ветер и вода, у нас будет доступ к мощной энергии, заключённой в этих источниках. Чистая энергия солнца, ветра и воды — фундамент энергетики будущего, энергетики, основанной на ничтожно малых выбросах. Необходимо, чтобы государствам стало более выгодно использовать энергию чистых источников. Сейчас начинается новый этап земной энергетики. Появилась энергетика «щадящая», построенная так, чтобы человек не рубил сук, на котором он сидит, а заботился об охране уже сильно поврежденной биосферы. Решение этих проблем требует комплексного подхода на национальном и международном уровне, что позволит ускорить их реализацию. Моё поколение должно быть готово к практическому использованию возобновляемых источников энергии.

Список литературы:

  1. Аркуша М.И. Элективный курс «Энергетика и окружающая среда», 11 класс. — Волгоград: 2010 г.
  2. Калашников Н.П. «Альтернативные источники энергии» М.: Знание 2008 г.
  3. Кондаков А.М. Альтернативные источники энергии — География в школе. 4/88 — М.: Педагогика. 2008 г.
  4. Кононов Ю.Д. Энергетика и экономика. Проблемы перехода к новым источникам энергии. — М.: Наука, 2009 г.
  5. Ревелль П., Ревелль Ч. «Энергетические проблемы человечества» Мир, 2005 г.
  6. Физика № 7 2011 г. Изд.дом Первое сентября
  7. Экология и право (Возобновляемая энергетика) г. СПб. 2008 г.
  8. Энергетические ресурсы мира. Под редакцией Непорожнего П.С., Попкова В.И. — М.: Энергоатомиздат. 2005 г.
  9. Энергия и окружающая среда (учебное пособие для ср. школы) г. СПб. 2008 г.

This entry was posted in Ремонт. Bookmark the <a href="https://kabel-house.ru/remont/istochniki-alternativnoj-energii/" title="Permalink to Источники альтернативной энергии" rel="bookmark">permalink</a>.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *