Индукция и индуктивность

Принцип получения переменной ЭДС

Пусть в однородном магнитном поле постоянного магнита равномерно вращается рамка (рис. 2.1), активные стороны которой перпендикулярны чертежу и пересекающие линии магнитной индукции с некоторой линейной скоростью v по часовой стрелке. При этом в сторонах а и в рамки наводится ЭДС противоположной полярности. При пересечении линии между точками А и В в сторонах рамки полярность меняется на противоположную.

Рис. 2.1

Время Т одного полного изменения ЭДС (это время одного оборота рамки) называют периодом ЭДС. Изменение ЭДС со временем может быть изображено на временной диаграмме (рис. 2.2). Магнитный поток Ф через рамку будет равен:

Ф = ВS cos б, 2. 1

где В — вектор магнитной индукции;

S — площадь активной части рамки;

сos б — угол между нормалью к рамке n и вектором магнитной индукции.

Для исчерпывающего определения синусоиды достаточно указать ее амплитуду, период и начальную фазу. Рекомендуем читателю самостоятельно построить две-три синусоиды с разными начальными фазами.

Рис. 2.2

Необходимость определения начальной фазы. Необходимость определения начальной фазы вытекает из следующего простого примера.

Представьте себе два последовательно включенных генератора, частоты и амплитуды ЭДС которых одинаковы. Спрашивается: можно ли заранее определить, суммарное напряжение в каждый момент времени? Очевидно, что нельзя.

Согласное включение двух генераторов. Если генераторы имеют одинаковую начальную фазу, то кривые напряжения (синусоиды в данном случае) для каждого генератора, изображенные на одном и том же чертеже и в одинаковом масштабе, совпадут. Следовательно, общее (суммарное) напряжение обоих генераторов будет всегда вдвое больше напряжения каждого генератора в отдельности. Обычно такое включение генераторов называют согласным.

Встречное включение двух генераторов. Предположим, что один генератор имеет начальную фазу, равную нулю, а другой — равную 180°, т. е. величина напряжения первого генератора в любой момент времени имеет то же значение, что и величина напряжения второго, однако знаки напряжений («+» или «-«) не будут совпадать.

В момент времени, когда напряжение первого генератора положительно, напряжение второго генератора отрицательно, и наоборот.

Учитывая, что напряжения складываются алгебраически, приходим к выводу, что результирующее напряжение в каждый момент времени равно нулю. Заметим, что если фазы генераторов отличаются на 180°, то иногда говорят, что генераторы работают в противофазе или соединены встречно.

Сдвиг фазы. Очевидно, что две синусоиды, имеющие разные начальные фазы, как бы сдвинуты одна относительно другой по горизонтали. Поэтому разность начальных фаз двух синусоид и называют обычно сдвигом фазы.

На рис. 2.3 показано простейшее устройство для получения переменного тока. По катушке проходит постоянный ток, и, следовательно, магнитное поле также постоянно. Стальной сердечник придает магнитным линиям желательную форму: между полюсами получается приблизительно однородное поле. В этом поле равномерно вращается прямоугольная рамка. Концы рамки соединены при помощи скользящих контактов с вольтметром.

Как уже сказано, магнитный поток, созданный катушкой, является постоянным. Но та его доля, которая сцеплена с вращающейся рамкой, будет неодинакова в разные моменты времени.

Изменение величины магнитного потока, пронизывающего виток, происходит непрерывно, хотя поток, создаваемый электромагнитом, остается неизменным. Следовательно, в рамке будет наводиться ЭДС. И действительно, опыт показывает, что стрелка вольтметра отклоняется.

Рис. 2.3 Получение переменного тока

Стрелка вольтметра попеременно отклоняется вправо и влево от нулевого положения.

Поскольку при вращении рамки пересекающий ее магнитный поток все время меняется, то по закону электромагнитной индукции в ней будет наводиться ЭДС индукции. Если период измеряется в секундах, то частота измеряется в герцах. В большинстве стран, включая Россию, промышленная частота переменного тока составляет 50 Гц (в США и Японии — 60 Гц). Величина промышленной частоты переменного тока обусловлена технико-экономическими соображениями. Если она слишком низка, то увеличиваются габариты электрических машин и, следовательно, расход материалов на их изготовление; заметным становится мигание света в электрических лампочках. При слишком высоких частотах увеличиваются потери энергии в сердечниках электрических машин и трансформаторах. Поэтому наиболее оптимальными оказались частоты 50 — 60 Гц. Однако в некоторых случаях используются переменные токи как с более высокой, так и с более низкой частотой. Например, в самолетах применяется частота 400 Гц. На этой частоте можно значительно уменьшить габариты и вес трансформаторов и электромоторов, что для авиации более существенно, чем увеличение потерь в сердечниках.

Катушка индуктивности является пассивным компонентом электронных схем, основное предназначение которой является сохранение энергии в виде магнитного поля. Свойство катушки индуктивности чем-то схоже с конденсатором, который хранит энергию в виде электрического поля.

Индуктивность (измеряется в Генри) — это эффект возникновения магнитного поля вокруг проводника с током. Ток, протекающий через катушку индуктивности, создает магнитное поле, которое имеет связь с электродвижущей силой (ЭДС) оказывающее противодействие приложенному напряжению.

Возникающая противодействующая сила (ЭДС) противостоит изменению переменного напряжения и силе тока в катушке индуктивности. Это свойство индуктивной катушки называется индуктивным сопротивлением. Следует отметить, что индуктивное сопротивление находится в противофазе к емкостному реактивному сопротивлению конденсатора в цепи переменного тока. Путем увеличения числа витков можно повысить индуктивность самой катушки.

Индуктивность в электрических цепях

В то время как конденсатор оказывает сопротивление изменению переменного напряжения, индуктивность же сопротивляется переменному тока. Идеальная индуктивность не будет оказывать сопротивление постоянному току, однако, в реальности все индуктивные катушки сами по себе обладают определенным сопротивлением.

В целом, отношение между изменяющимися во времени напряжением V(t) проходящим через катушку с индуктивностью L и изменяющимся во времени током I(t), проходящим через нее можно представить в виде дифференциального уравнения следующего вида:

Когда переменный синусоидальной ток (АС) протекает через катушку индуктивности, возникает синусоидальное переменное напряжение (ЭДС). Амплитуда ЭДС зависит от амплитуды тока и частоте синусоиды, которую можно выразить следующим уравнением:

где ω является угловой частотой резонансной частоты F:

Причем, фаза тока отстает от напряжения на 90 градусов. В конденсаторе же все наоборот, там ток опережает напряжение на 90 градусов. Когда индуктивная катушка соединена с конденсатором (последовательно либо параллельно), то образуется LC цепь, работающая на определенной резонансной частоте.

Индуктивное сопротивление ХL определяется по формуле:

где ХL — индуктивное сопротивление, ω — угловая частота, F — частота в герцах, и L индуктивность в генри.

Индуктивное сопротивление — это положительная составляющая импеданса. Оно измеряется в омах. Импеданс катушки индуктивности (индуктивное сопротивление) вычисляется по формуле:

Применение катушек индуктивности

Индуктивности широко используются в аналоговых схемах и схемах обработки сигналов. Они в сочетании с конденсаторами и другими радиокомпонентами образуют специальные схемы, которые могут усилить или отфильтровать сигналы определенной частоты.

Катушки индуктивности получили широкое применение начиная от больших катушек индуктивности, таких как дроссели в источниках питания, которые в сочетании с конденсаторами фильтра устраняют остаточные помехи и другие колебания на выходе источника питания, и до столь малых индуктивностей, которые располагаются внутри интегральных микросхем.

Две (или более) катушки индуктивности, которые соединены единым магнитным потоком, образуют трансформатор, являющимся основным компонентом схем работающих с электрической сетью электроснабжения. Эффективность трансформатора возрастает с увеличением частоты напряжения.

По этой причине, в самолетах используется переменное напряжение с частотой 400 герц вместо обычных 50 или 60 герц, что в свою очередь позволяет значительно сэкономить на массе используемых трансформаторов в электроснабжении самолета.

Так же индуктивности используются в качестве устройства для хранения энергии в импульсных стабилизаторах напряжения, в высоковольтных электрических системах передачи электроэнергии для преднамеренного снижения системного напряжения или ограничения ток короткого замыкания.

Законы Фарадея и Ленца

Электрические токи создают магнитные эффекты. А возможно ли, чтобы магнитное поле порождало электрическое? Фарадей обнаружил, что искомые эффекты возникают вследствие изменения МП во времени.

Когда проводник пересекается переменным магнитным потоком, в нем индуцируется электродвижущая сила, вызывающая электроток. Системой, которая генерирует ток, может быть постоянный магнит или электромагнит.

Явление электромагнитной индукции регулируется двумя законами: Фарадея и Ленца.

Закон Ленца позволяет охарактеризовать электродвижущую силу относительно ее направленности.

Важно! Направление индуцированной ЭДС такое, что вызванный ею ток стремится противостоять создающей его причине.

Фарадей заметил, что интенсивность индуцированного тока растет, когда быстрее изменяется число силовых линий, пересекающих контур. Другими словами, ЭДС электромагнитной индукции находится в прямой зависимости от скорости движущегося магнитного потока.

ЭДС индукции

Формула ЭДС индукции определена как:

Е = — dФ/dt.

Знак «-» показывает, как полярность индуцированной ЭДС связана со знаком потока и меняющейся скоростью.

Получена общая формулировка закона электромагнитной индукции, из которой можно вывести выражения для частных случаев.

Вращающаяся катушка

Работа генератора электроэнергии основана на вращении контура в МП, имеющего N витков.

ЭДС индуцируется в электроцепи всегда, когда магнитный поток ее пересекает, в соответствии с определением магнитного потока Ф = B x S х cos α (магнитная индукция, умноженная на поверхностную площадь, через которую проходит МП, и косинус угла, образованного вектором В и перпендикулярной линией к плоскости S).

Из формулы следует, что Ф подвержен изменениям в следующих случаях:

  • меняется интенсивность МП – вектор В;
  • варьируется площадь, ограниченная контуром;
  • изменяется ориентация между ними, заданная углом.

В первых опытах Фарадея индуцированные токи были получены путем изменения магнитного поля В. Однако можно индуцировать ЭДС, не двигая магнит или не меняя ток, а просто вращая катушку вокруг своей оси в МП. В данном случае магнитный поток меняется из-за изменения угла α. Катушка при вращении пересекает линии МП, возникает ЭДС.

Если катушка вращается равномерно, это периодическое изменение приводит к периодическому изменению магнитного потока. Или количество силовых линий МП, пересекаемых каждую секунду, принимает равные значения с равными интервалами времени.

Вращение контура в МП

Важно! Наведенная ЭДС меняется вместе с ориентацией с течением времени от положительной до отрицательной и наоборот. Графическое представление ЭДС представляет собой синусоидальную линию.

Для формулы ЭДС электромагнитной индукции применяется выражение:

Е = В х ω х S x N x sin ωt, где:

  • S – площадь, ограниченная одним витком или рамкой;
  • N – количество витков;
  • ω – угловая скорость, с которой вращается катушка;
  • В – индукция МП;
  • угол α = ωt.

На практике в генераторах переменного тока часто катушка остается неподвижной (статор), а электромагнит вращается вокруг нее (ротор).

Взаимоиндукция

Если две катушки расположены рядом, то в них наводится ЭДС взаимоиндукции, зависящая от геометрии обеих схем и их ориентации относительно друг друга. Когда разделение цепей возрастает, взаимоиндуктивность снижается, так как уменьшается соединяющий их магнитный поток.

Взаимоиндукция

Пусть имеется две катушки. По проводу одной катушки, обладающей N1 витками, протекает ток I1, создающий МП, проходящее через катушку с N2 витками. Тогда:

  1. Взаимоиндуктивность второй катушки относительно первой:

М21 = (N2 x F21)/I1;

  1. Магнитный поток:

Ф21 = (М21/N2) x I1;

  1. Найдем индуцированную ЭДС:

Е2 = — N2 x dФ21/dt = — M21x dI1/dt;

  1. Идентично в первой катушке индуцируется ЭДС:

Е1 = — M12 x dI2/dt;

Важно! Электродвижущая сила, вызванная взаимоиндукцией в одной катушке, всегда пропорциональна изменению электротока в другой.

Взаимную индуктивность можно признать равной:

М12 = М21 = М.

Соответственно, E1 = — M x dI2/dt и E2 = M x dI1/dt.

М = К √ (L1 x L2),

где К – коэффициент связи между двумя индуктивностями.

Явление взаимоиндукции используется в трансформаторах – электроаппаратах, позволяющих изменить значение напряжения переменного электротока. Аппарат представляет собой две катушки, намотанные вокруг одного сердечника. Ток, присутствующий в первой, создает меняющееся МП в магнитопроводе и электроток в другой катушке. Если количество витковых оборотов первой обмотки меньше, чем другой, напряжение увеличивается, и наоборот.

Кроме генерирования, трансформации электроэнергии магнитная индукция применяется в иных устройствах. Например, в магнитных левитационных поездах, которые двигаются не в непосредственном контакте с рельсами, а на несколько сантиметров выше из-за электромагнитной силы отталкивания.

>Видео

This entry was posted in Ремонт. Bookmark the <a href="https://kabel-house.ru/remont/induktsiya-i-induktivnost/" title="Permalink to Индукция и индуктивность" rel="bookmark">permalink</a>.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *