Содержание
Температурные датчики, их виды.
В основе работы любых температурных датчиков, использующихся в системах автоматического управления, лежит принцип преобразования измеряемой температуры в электрическую величину. Это обусловлено следующими достоинствами электрических измерений: электрические величины удобно передавать на расстояние, причем передача осуществляется с высокой скоростью; электрические величины универсальны в том смысле, что любые другие величины могут быть преобразованы в электрические и наоборот; ониточно преобразуются в цифровой код и позволяют достигнуть высокой точности,чувствительности и быстродействия средств измерений.
1. Термопреобразователи сопротивления.
Принцип действия термопреобразователей сопротивления (термо-резисторов) основан на изменении электрического сопротивления проводников иполупроводников в зависимости от температуры. Материал, из которого изготавливается такой датчик, должен обладать высоким температурным коэффициентом сопротивления, по возможности линейной зависимостью сопротивления от температуры, хорошей воспроизводимостью свойств иинертностью к воздействиям окружающей среды. В наибольшей степени всемуказанным свойствам удовлетворяет платина; в чуть меньшей – медь.
Платиновые терморезисторы предназначены для измерения температур впределах от –260 до 1100 0С. В диапазоне температур от 0 до 650 0С ихиспользуют в качестве образцовых и эталонных средств измерений, причемнестабильность градуировочной характеристики таких преобразователей непревышает 0,001 0С.
Платиновые терморезисторы обладают высокой стабильностью ивоспроизводимостью харакетристик. Их недостатками являются высокая стоимость и нелинейность функции преобразования. Поэтому они используются для точных измерений температур в соответствующем диапазоне.
Широкое распространение на практике получили более дешевые медные терморезисторы.
Недостатком меди является небольшое ее удельное сопротивление и легкая окисляемость при высоких температурах, вследствие чего конечный предел применения медных термометров сопротивления ограничивается температурой 1800C. По стабильности и воспроизводимости характеристик медные терморезисторы уступают платиновым.
Тепловая инерционность стандартных термометров сопротивления характеризуется показателем тепловой инерции (постоянной времени), значения которого лежат в пределах от десятков секунд до единиц минут. Постоянная времени специально изготавливаемых малоинерционных термометров сопротивления может быть уменьшена до 0,1 с. Находят применение также никелевые термометры сопротивления. Никель имеет относительно высокое удельное сопротивление.
Медные и никелевые терморезисторы выпускают также из литого микропровода в стеклянной изоляции. Микропроволочные терморезисторы герметизированы, высокостабильны, малоинерционны и при малых габаритных размерах могут иметь сопротивления до десятков килоом. По сравнению с металлическими терморезисторами более высокой чувствительностью обладают полупроводниковые терморезисторы (термисторы).Они имеют отрицательный температурный коэффициент сопротивления, т.е. на порядок больше, чем у меди и платины. Полупроводниковые терморезисторы при весьмамалых размерах имеют высокие значения сопротивления (до 1 МОм). Для измерения температуры наиболее распространены полупроводниковые терморезисторы типов КМТ (смесь окислов кобальта и марганца) и ММТ (смесь окислов меди и марганца). Термисторы имеют линейную функцию преобразования.
Серьезным недостатком термисторов, не позволяющим с достаточнойточностью нормировать их характеристики при серийном производстве, является плохая воспроизводимость характеристик (значительное отличие характеристик одного экземпляра от другого).
Полупроводниковые датчики температуры обладают высокой стабильностью характеристик во времени и применяются для изменения температур в диапазонеот –100 до 200 0С. Измерительная схема с участием термопреобразователей сопротивления чаще всего является мостовой; уравновешивание моста осуществляется спомощью потенциометра.
При изменении сопротивления терморезистора соответственно изменяется положение движка потенциометра, положениек оторого относительно шкалы формирует показание прибора; шкала градуируется непосредственно в единицах температуры.
Недостатком такой схемы включения является вносимая проводами подключения терморезистора погрешность; поскольку из-за изменения сопротивления проводов при изменении температуры окружающей среды компенсация указанной погрешности невозможна, применяют трехпроводную схему включения проводов, при использовании которой сопротивления подводящих проводов оказываются в различных ветвях, и их влияние значительно уменьшается.
Термоэлектрические преобразователи (термопары).
Принцип действия термопар основан на термоэлектрическом эффекте,заключающемся в том, что в замкнутом контуре, состоящем из двух разнородныхпроводников (или полупроводников), течет ток, если места спаев проводниковимеют различные температуры. Если взять замкнутый контур, состоящий изразнородных проводников (термоэлектродов), то на их спаях возникнут термо-ЭДС E(t) и E(t0), зависящие от температур этих спаев t и t0. Так какэти термо-ЭДС оказываются включенными встречно, то результирующая термо-ЭДС,действующая в контуре, равна E(t) – E(t0).
При равенстве температур обоих спаев результирующая термо-ЭДС равнанулю. Спай, погружаемый в контролируемую среду, называется рабочим концомтермопары, а второй спай – свободным. У любой пары однородных проводников значение результирующей термо-ЭДС зависит только от природы проводников и от температуры спаев и не зависит от распределения температуры вдоль проводников.
Термоэлектрический контур можно разомкнуть в любом месте и включить в него один или несколько разнородных проводников. Если все появившиеся при этом места соединений находятся при одинаковой температуре, то результирующая термо-ЭДС, действующая в контуре, не изменяется. Это используется для измерения термо-ЭДС термопары. Создаваемая термопарами ЭДС сравнительно невелика: она не превышает 8 мВ на каждые 100 0С и обычно не превышает по абсолютной величине 70 мВ. Термопары позволяют измерять температуру в диапазоне от –200 до 22000С. Для измерения температур до 1100 0С используют в основном термопары из неблагородных металлов, для измерения температур от 1100 до 1600 0С – термопары из благородных металлов и сплавов платиновой группы, а для измерения более высоких температур – термопары из жаростойких сплавов (на основе вольфрама).
Наибольшее распространение для изготовления термоэлектрических преобразователей получили платина, платинородий, хромель, алюмель. При измерениях температуры в широком диапазоне учитывается нелинейность функции преобразования термоэлектрического преобразователя.
Постоянная времени термоэлектрических преобразователей зависит от их конструкции и качества теплового контакта рабочего спая термопары со средой и для промышленных термопар исчисляется в минутах. Однако известны конструкции малоинерционных термопар, у которых постоянная времени лежит впределах 5 – 20 секунд и ниже.
Электроизмерительный прибор (милливольтметр) или измерительный усилитель термо-ЭДС могут подключаться к контуру термопары двумя способами: в свободный конец термопары или в один из термоэлектродов; выходная термо-ЭДС от способа подключения измерительных устройств не зависит. Как указано выше, при измерении температуры свободные концы термопары должны находиться при постоянной температуре, но как правило, свободные концы термопары конструктивно выведены на зажимы на ее головке, аследовательно, расположены в непосредственной близости от объектов,температура которых измеряется.
Чтобы отнести эти концы в зону с постоянной температурой, применяются удлиняющие провода, состоящие из двух жил, изготовленных из металлов или сплавов, имеющих одинаковые термоэлектрические свойства с термоэлектродами термометра.
Для термопар из неблагородных металлов удлиняющие провода изготавливаются чаще всего из тех же материалов, что и основные термоэлектроды, тогда как для датчиков из благородных металов в целях экономии удлиняющие провода выполняются из материалов, развивающих в паремежду собой в диапазоне температур 0 – 150 0С ту же термо-ЭДС, что и электроды термопары. Так, для термопары платина – платинородий применяются удлинительные термоэлектроды из меди и специального сплава, образующие термопару, идентичную по термо-ЭДС термопаре платина-платинородий в диапазоне 0 – 150 0С. Для термопары хромель – алюмель удлинительные термоэлектроды изготавливаются из меди и константана, а для термопары хромель – копель удлинительными являются основные термоэлектроды, новыполненные в виде гибких проводов. При неправильном подключении удлинительных термоэлектродов возникает существенная погрешность.
В лабораторных условиях температура свободных концов термопары поддерживается равной 0 0С путем помещения их в сосуд Дьюара, наполненный истолченным льдом с водой. В производственных условиях температура свободных концов термопары обычно отличается от 0 0С. Так как градуировка термопар осуществляется при температуре свободных концов 0 0С, то это отличие может явиться источником существенной погрешности; для уменьшения указанной погрешности, как правило, вводят поправку в показания термометра. При выборе поправки учитываются как температура свободных концов термопары,так и значение измеряемой температуры (это связано с тем, что функция преобразования термопары нелинейна); это затрудняет точную коррекцию погрешности.
На практике для устранения погрешности широкое применение находит автоматическое введение поправки на температуру свободных концов термопары.Для этого в цепь термопары и милливольтметра включается мост, одним из плеч которого является медный терморезистор, а остальные образованы манганиновыми терморезисторами. При температуре свободных концов термопары, равной 0 0С,мост находится в равновесии; при отклонении температуры свободных концов термопары от 0 0С напряжение на выходе моста не равно нулю и суммируется с термо-ЭДС термопары, внося поправку в показания прибора (значение поправки регулируется специальным резистором). Вследствие нелинейности функции преобразования термопары полной компенсации погрешности не происходит, но указанная погрешность существенно уменьшается.
В лабораторных условиях для точного измерения термо-ЭДС применяются лабораторные и образцовые компенсаторы постоянного тока с ручным уравновешиванием.
Пирометры.
Серьезным недостатком рассмотренных выше термопреобразователей сопротивления и термоэлектрических преобразователей является необходимость введения датчика в контролируемую среду, в результате чего происходит искажение исследуемого температурного поля. Кроме того, непосредственное воздействие среды на датчик ухудшает стабильность его характеристик, особенно при высоких и сверхвысоких температурах и в агрессивных средах. От этих недостатков свободны пирометры – бесконтактные датчики, основанные на использовании излучения нагретых тел. Тепловое излучение любого тела можно характеризовать количеством энергии, излучаемой телом с единицы поверхности в единицу времени иприходящейся на единицу диапазона длин волн. Такая характеристика представляет собой спектральную плотность и называется спектральной светимостью (интенсивностью монохроматического излучения).
Интенсивность излучения любого реального тела всегда меньше интенсивности абсолютно черного тела при той же температуре. Уменьшение спектральной светимости реального тела по сравнению с абсолютно черным учитывают введением коэффициента неполноты излучения; его значение различно для разных физических тел и зависит от состава вещества, состояния поверхности тела и других факторов. Использующие энергию излучения нагретых тел пирометры делятся на радиационные, яркостные и цветовые. Радиационные пирометры используются для измерения температуры от 20 до 2500 0С, причем прибор измеряет интегральную интенсивность излучения реального объекта; в связи с этим при определении температуры необходимо учитывать реальное значение коэффициента неполноты излучения.
В типичный радиационный пирометр входит телескоп, состоящий изобъектива и окуляра, внутри которого расположена батарея из последовательно соединенных термопар. Рабочие концы термопар находятся на платиновомлепестке, покрытом платиновой чернью. Телескоп наводится на объект измерения так, чтобы лепесток полностью перекрывался изображением объекта и вся энергия излучения воспринималась термобатареей. Термо-ЭДС термобатареи является функцией мощности излучения, а следовательно, и температуры тела.
Радиационные пирометры градуируются по излучению абсолютно черного тела, поэтому неточность оценки коэффициента неполноты излучения вызывает погрешность измерения температуры. Яркостные (оптические) пирометры используются для измерения температур от 500 до 4000 0С. Они основаны на сравнении в узком участке спектра яркости исследуемого объекта с яркостью образцового излучателя(фотометрической лампы). Фотометрическая лампа встроена в телескоп, имеющий объектив и окуляр.
Яркостные пирометры обеспечивают более высокую точность измерений температуры, чем радиационные. Их основная погрешность обусловлена неполнотой излучения реальных физических тел и поглощением излучения промежуточной средой, через которую производится наблюдение.
Цветовые пирометры основаны на измерении отношения интенсивностей излучения на двух длинах волн, выбираемых обычно в красной или синей части спектра; они используются для измерения температуры в диапазоне от 800 до 0С. Обычно цветовой пирометр содержит один канал измерения интенсивности монохроматического излучения со сменными светофильтрами.
Главным преимуществом цветовых пирометров является то, что неполнота излучения исследуемого объекта не вызывает погрешности изменения температуры. Кроме того, показания цветовых пирометров принципиально независят от расстояния до объекта измерения, а также от коэффициента излучения в промежуточной среде, если коэффициенты поглощения одинаковы для обеих длин волн.
Кварцевые термопреобразователи
Для измерения температур от –80 до 250 0С часто используются такназываемые кварцевые термопреобразователи, использующие зависимость собственной частоты кварцевого элемента от температуры. Работа данных датчиков основана на том, что зависимость частоты преобразователя от температуры и линейность функции преобразования изменяются в зависимости оториентации среза относительно осей кристалла кварца.
Кварцевые термопреобразователи имеют высокую чувствительность (до 103Гц/К). высокую временную стабильность и разрешающую способность, что и определяет перспективность. Данные датчики широко используются в цифровых термометрах.
Шумовые датчики.
Действие шумовых термометров основано на зависимости шумового напряжения на резисторе от температуры.
Практическая реализация метода измерения температуры на основе шумовых резисторов заключается в сравнении шумов двух идентичных резисторов, один из которых находится при известной температуре, а другой –при измеряемой. Шумовые датчики используются, как правило, для измерения температур в диапазоне –270 – 1100 0С.
Достоинством шумовых датчиков является принципиальная возможность измерения термодинамической температуры на основе указанной выше закономерности. Однако это значительно осложняется тем, что среднееквадратическое значение напряжения шумов очень трудно измерить точновследствие его малости и сопоставимости с уровнем шума усилителя.
ЯКР — датчики.
ЯКР-термометры (термометры ядерного квадрупольного резонанса)основаны на взаимодействии градиента электрического поля кристаллической решетки и квадрупольного электрического момента ядра, вызванного отклонением распределения заряда ядра от сферической симметрии. Это взаимодействие обусловливает прецессию ядер, частота которой зависит от градиента электрического поля решетки и для различных веществ имеет значения от сотен килогерц до тысяч мегагерц. Градиент электрического поля решетки зависит от температуры, и с повышением температуры частота ЯКР снижается.
Датчик ЯКР-термометра представляет собой ампулу с веществом, заключенную внутрь катушки индуктивности, включенной в контур генератора. При совпадении частоты генератора с частотой ЯКР происходит поглощение энергии от генератора. Погрешность измерения температуры -263 0С составляет ± 0.02 0С, а температуры 27 0С — ± 0.002 0С. Достоинством ЯКР-термометров является его неограниченная во времени стабильность, а недостатком – существенная нелинейность функции преобразования.
Дилатометрические преобразователи.
Дилатометрические (объемные) датчики измерения температуры основаны на явлении расширения (сжатия) твердых тел, жидкостей или газов при увеличении (уменьшении) температуры.
Температурный диапазон работы преобразователей, основанных нарасширении твердых тел, определяется стабильностью свойств материалов при изменении температуры. Обычно с помощью таких преобразователей измеряют температуры в диапазоне –60 – 400 0С. Погрешность преобразования составляет 1 – 5 %. Температурный диапазон работы преобразователя с расширяющейся жидкостью зависит от температур замерзания и кипения последней (для ртути —39 – 357 0С, для амилового спирта — -117 – 132 0С, для ацетона — -94 – 570С. Погрешности жидкостных преобразователей составляют 1 – 3 % и взначительной степени зависят от температуры окружающей среды, изменяющей размеры капилляра.
Нижний предел измерения преобразователей, использующих в качестве рабочей среды газ, ограничивается температурой сжижения газа ( — 195 0С дляазота, — 269 0С для гелия), верхний же – лишь теплостойкостью баллона.
Акустические датчики.
Акустические термометры основаны на зависимости скорости распространения звука в газах от их температуры и используются в основном диапазоне средних и высоких температур. Акустический термометр содержит пространственно разнесенные излучатель акустических волн и их приемник, обычно включаемые в цепь автогенератора, частота колебаний которого меняется с изменением температуры; обычно такой датчик использует иразличного типа резонаторы.
Датчики температуры. Виды и принцип действия, Как выбрать
Датчики температуры нужны для того, чтобы проконтролировать температуру в помещении, жидкости, твердого объекта или расплавленного металла.
Основой действия температурных датчиков в автоматизированном управлении является изменение температуры в электрический сигнал. Это обуславливает преимущества электрических измерений: результаты легко передавать по сети, скорость передачи может быть достаточно высокой. Величины могут преобразовываться друг в друга и обратно. Цифровой код создает повышенную точность замера, скорость и чувствительность.
Виды и принцип действия
Термопары
Термопара представляет собой две проволоки из разных металлов, спаянных между собой. При разности температур между горячим и холодным концом в цепи возникает электрический ток. Величина этого электрического тока зависит от термоэлектрической силы термопары, составляет от 40 до 60 мкВ, в зависимости от материала термопары. Материал термопары может быть разным. Это могут быть никель-хромовые, хромо-алюминиевые, железо-никелевые, железо-константановые и т.д.
Термопара является высокоточным датчиком температуры, однако эту точность достаточно проблематично снять. Термопара является относительным датчиком температуры, уровень ее напряжения имеет зависимость от температурной разности между спаями. При этом холодный спай находится при комнатной температуре или при какой-либо другой.
Рассмотрим работу термопары ближе. Есть две термопары и две температуры горячего и холодного конца. Соответственно ЭДС зависит от разности температур. Температуру холодного спая необходимо компенсировать. Аппаратным способом компенсации является использование второй термопары, которая помещена в заранее известную температуру.
Программным способом компенсации является использование другого датчика температуры, на этот раз абсолютного, который помещается в изотермическую камеру вместе с холодными спаями и контролирует их температуру с заданной точностью. Имеются трудности снятия данных с термопары.
Во-первых, она нелинейная. В ГОСТе заботливо введены коэффициенты полинома для перевода ЭДС в температуру и обратно. Эти полиномы большого порядка, но ничто не запрещает спокойно их посчитать силами контроллера.
Во-вторых, другая проблема заключается в том, что термо-ЭДС термопары измеряется в единицах и сотнях микровольт. Соответственно, использование широко доступных аналогоцифровых преобразователей приведет к полному провалу. Нужны прецизионные многоразрядные малошумящие аналогоцифровые преобразователи для того, чтобы использовать термопару в своих конструкциях.
Терморезисторы
Гораздо более простым способом измерения стало применение терморезисторов. Они работают на зависимости сопротивления материалов от внешней температуры. Металлические термометры сопротивления, в частности платиновые обладают очень высокой точностью и линейностью. Термометры сопротивления определяются двумя основными характеристиками.
Это базовое сопротивление термометра при определенной температуре. В ГОСТе базовым сопротивлением считается сопротивление при 0 градусах по Цельсию. ГОСТ рекомендует использование нескольких номиналов сопротивлений в Омах и температурный коэффициент, который определяется как разность сопротивлений нашей температуры и при 0 градусов, деленной на нашу температуру и t нуля градусов, умноженную на единицу, деленную на базовое сопротивление.
Ткс = (Re – R0c) / (Te – T0c) *1/R0c
В ГОСТе на терморезисторы вы найдете температурный коэффициент для различных термометров из платины, меди и никеля. Кроме того, там присутствуют коэффициенты полинома для расчета температуры из текущего сопротивления резистора. Одной из проблем термометров сопротивления является очень низкий температурный коэффициент сопротивления. Однако, измерять сопротивление с высокой точностью гораздо проще, чем очень малые значения напряжения в отличие от термопар.
Одним из способов измерения сопротивления является включение нашего термосопротивления в цепь источника тока и измерение дифференциального напряжения. Использование полупроводников даст нам температурный коэффициент доли единицы процента, их гораздо проще измерять с помощью аналогоцифровых преобразователей. Есть интегральные микросхемы датчиков температуры, аналоговый выход которых уже соответствует питаемому напряжению. Такие датчики температуры можно напрямую подключать к аналогоцифровому преобразователю и спокойно оцифровывать его с помощью восьми- или десятибитного АЦП.
Комбинированный датчик
Помимо интегральных схем с выходом, существуют датчики с цифровым интерфейсом. Одним из популярных датчиков является комбинированный датчик температуры и влажности серии SHT1. Этот датчик позволяет измерять температуру с точностью + 2 градуса и влажность с точностью + 5 градусов. Главной проблемой данного датчика температуры является то, что там решили оптимизировать интерфейс. Он позволяет подключать параллельные устройства.
Цифровой датчик
Цифровой датчик температуры DS18B20, который представляет собой трехвыводную микросхему, позволяет с высокой точностью до 0,5 градуса получать температуру с множеством параллельно работающих датчиков. В этом датчике широкий интервал температур от -55 до +125 градусов. Основной его недостаток – медлительность. Вычисления с максимальной точностью он делает за 750 мс. Ввиду инерционности корпуса датчика температуры опрашивать его нет никакого смысла.
Бесконтактные датчики (пирометры)
В этом датчике имеется специальная тонкая пленка, поглощающая инфракрасные излучения, тем самым нагревающаяся. Такие бесконтактные термосенсоры используются в тепловизорах. Там имеется не один тепловой датчик, а матрица. Они позволяют на расстоянии до 3 метров детектировать тепловой объект.
Кварцевые преобразователи температуры
Для того, чтобы измерить температуру в интервале -80 +250 градусов применяют кварцевые преобразователи. Они работают на частотной зависимости кварца от температуры. Действие датчиков происходит на частотной зависимости. Функция преобразователя меняется от расположения среза по осям кристалла.
Кварцевые датчики работают с высокой чувствительностью, разрешением, стабильностью. Эти свойства делают их перспективными в использовании. Они получили большое распространение в цифровых термометрах.
Шумовые датчики температуры
Работа шумовых датчиков заключается на зависимости шумовой разности потенциалов на резисторе от температуры. Практически реализовать способ измерения температуры шумовыми датчиками можно, сделав сравнение шумов 2-х одинаковых резисторов, один находится при определенной температуре, 2-й при измеряемой температуре. Шумовые датчики температуры применяются для температурного интервала -270 -1100 градусов.
Преимуществом шумовых датчиков стала возможность измерения температуры в термодинамике на вышеописанной закономерности. Но это осложнено трудным измерением напряжения шума, так как оно мало и сравнимо с шумом усилителя.
Датчики температуры ЯКР (ядерного квадрупольного резонанса)
Термометры ЯКР работают за счет действия градиента поля тока решетки кристалла и момента ядра, которое вызвано отклонением заряда от симметрии сферы. Это создает процессию ядер. Частота имеет зависимость от градиента поля решетки. Для разных веществ имеет величину до тысяч МГц. Градиент зависит от температуры, с ее возрастанием частота ЯКР уменьшается.
Датчики температуры ЯКР образуют ампулу с веществом, помещенную в обмотку индуктивности, которая соединена с контуром генератора. Когда частота генератора совпадает с частотой ЯКР, то энергия генератора поглощается. Допуск замера температуры -263 градуса равен + 0,02 градуса, а температуры 27 градусов +0,002 градуса. Преимуществом термометров ЯКР становится стабильность, неограниченная по времени, недостатком является значительная нелинейность преобразующей функции.
Объемные преобразователи
Объемные датчики действуют на расширении и сжатии веществ при изменении температуры. Диапазон действия преобразователей определяется, насколько стабильны свойства материалов. Датчиками делают измерения температуры в интервале -60 -400 градусов. Допуск измерения составляет от 1 до 5%. Интервал работы датчика с жидкостью может зависеть от температуры закипания и замерзания. Погрешности измерения датчиков на жидкости от 1 до 3%, определяются температурой среды.
Нижняя граница измерения преобразователей на газе определяется температурой перехода газа в жидкое состояние, верхняя граница – стойкостью баллона к воздействию температуры.
Параметры выбора датчика температуры
- Диапазон рабочей температуры.
- Возможность погружения датчика в объект измерения или среду. Если это невозможно, то лучше выбрать пирометр или термометр.
- Условия проведения замеров. Если нужно измерять в агрессивной среде, то надо выбирать датчик в коррозионностойком корпусе, или бесконтактного типа. Также следует определить наличие давления, влажности и т.д.
- Время работы датчика до калибровки или замены. Многие датчики не могут долго и стабильно работать (термисторы).
- Величина сигнала выхода. Существуют датчики температуры, выдающие сигнал по току, или в градусах.
- Технические данные: погрешность, разрешение, напряжение, время сработки. Для полупроводников важен тип корпуса.
Практически в любой современной аппаратуре есть датчики температуры. Это устройство, которое позволяет измерить температуру объекта или вещества, используя при этом различные свойства и характеристики измеряемых тел или среды. Не смотря на то, что все термодатчики призваны измерять температуру, разные типы датчиков делают это абсолютно по-разному. Давайте подробнее разберем принцип работы и характеристики основных видов термодатчиков.
Полупроводниковые интегральные датчики температуры Текст научной статьи по специальности «Общие и комплексные проблемы естественных и точных наук»
Громов B.C., Шестимеров С.М., Увайсов С.У. ПОЛУПРОВОДНИКОВЫЕ ИНТЕГРАЛЬНЫЕ ДАТЧИКИ ТЕМПЕРАТУРЫ
Все известные полупроводниковые измерители температуры основаны на использовании в качестве преобразователей температуры в электрический сигнал либо полупроводниковых резисторов, либо полупроводниковых диодов и транзисторов.
Полупроводниковые резисторы являются самыми распространенными преобразователями температуры, выпускаемыми промышленностью. По материалу, исполь зуемому при создании полупроводниковых резисторов, они подразделяются на поликристаллические и монокристаллические резисторы. По значению температурного коэффициента сопротивления (ТКС) полупроводниковые резисторы можно разделить на два класса — приборы с отрицательным и положительным ТКС. Отрицательный ТКС имеют, как правильно, полупроводниковые резисторы, изготовленные на основе медно-марганцевых (типа ММТ) и кобальтомарганцевых (типа КМТ) оксидных полупроводников. Получение необходимых величин сопротивлений и ТКС достигается изменением процентного соотношения оксидов металлов в композиции при использовании метода совместного осаждения щелочью азотно-кислотных соединений марганца, кобальта, меди и прокаливания гидратов окислов. Для получения полупроводниковых резисторов исходный материал в виде порошка с органической связкой обрабатывается выдавливанием через мундштук или прессованием, по технологии, широко используемой в керамическом производстве. Такая технология позволяет обеспечить довольно низкие метрологические характеристики, так например, допустимое отклонение сопротивления от номинала у большинства типов резисторов составляет ±20%, а разброс ТКС для партии одного номинала составляет ±10%. Кроме того, особенностью таких полупроводниковых резисторов является нелинейная температурная характеристика. Поэтому данные полупроводниковые резисторы редко используются в приборах для измерения температуры и их область применения, как правильно, ограничивается системами терморегулирования и термозащиты.
Полупроводниковые резисторы на основе монокристаллических полупроводников, например, кремния, германия, карбида кремния, фосфира гелия, выполняются как с положительным, так и с отрицательным ТКС. Кремниевые, например, резисторы могут быть выполнены в виде слоя определенного типа проводимости в исходной кремниевой пластине противоположного типа проводимости, либо в виде узкого канала требуемого типа проводимости в пластине. Омические контакты создаются, например, путем химического осаждения никеля. Полупроводниковые резисторы на основе кремния (отечественные, например, СТ5-1, СТ6-1А, СТ6-3Б и зарубежные, например, типа KTI-81) имеют более высокий ТКС и значительно меньшие габариты по сравнению с поликристаллическими резисторами и резисторами, выполненными из меди и пластины. Они обладают почти линейной зависимостью и могут быть изготовлены с высоким номинальным значением сопротивления (десятки кОм). Кремниевые резисторы могут быть выполнены с допускаемым отклонением от номинального сопротивления (1-2) %. Это достигается химическим, электро-
химическим травлением или лазерным выжиганием резисторного слоя на кремниевой пластине. Использование кремниевых резисторов для измерения температуры представляет особый интерес в случае массового применения, так как они значительно дешевле других аналогичных преобразователей температуры и имеют большой температурный коэффициент (до 1 %/K). Недостатками кремниевых резисторов по сравнению с их металлическими аналогами (медными, платиновыми резисторами) являются меньший диапазон измеряемых температур и значительная нелинейность температурной характеристики. Однако для определенных применений эти недостатки имеют второстепенное значение. Схема измерителя температуры, содержащего в качестве преобразователя температуры в электрический сигнал кремниевый резистор типа KTI-81 с положительным ТКС, приведена на рис. 1
Рис. 1. Типовая измерительная схема, содержащая в качестве термопреобразователя резистор, например, типа KTI-81
Полупроводниковый резистор размещен в плече измерительного моста, состоящего из резисторов R4… R7. Измерительный мост питается напряжением 2,7 В, стабилизированным с помощью стабилитрона V1. Ток питания моста не превышает 1 мА во избежание возникновения заметных погрешностей из-за перегрева, обусловленного этим током. Чувствительность измерительного моста составляет 4 мВ/°с и повышается усилителем V3 до 50 мВ/°С на выходе. Все элементы схемы измерения температуры (рис. 1) могут быть выполнены с помощью известных методов полупроводниковой технологии в объеме и на поверхности пластинки кремния. Например, таким образом, фирма Analog Devices серийно изготавливает датчики температуры в виде монолитных интегральных схем типа AD22100, упрощенный принцип работы которых приведен на рис. 2.
+Е пит
Рис. 2. Упрощенная блок-схема датчика температуры типа AD2210 0 с аналоговым выходом Этот тип датчиков может работать в диапазоне температуры от минус 50°С до плюс 150°С. Точность измерения температуры не хуже, чем ±2%, и линейность не хуже, чем ±1% во всем измеряемом диапазоне. Температурный коэффициент выходного напряжения ^ых равен 22,5 мВ/°С. При напряжении питания
Eпит = +5 В выходное напряжение изменяется от +0,25 В (при температуре -50 С) до +4,75 В (при температуре +150°С). Использование диодных структур в качестве первичных преобразователей температу-
ры позволяет значительно улучшить линейность температурной характеристики полупроводникового датчика температуры по сравнения с кремниевым резистором. Это объясняется тем, что прямое падение напряжения на диоде при специальном его применении более линейно изменяется с изменением температуры, чем электрическое сопротивление кремниевого терморезистора. Действительно, если через диод в прямом направлении пропускается постоянный ток 1пр, то его связь с прямым напряжением и^ на p-n
переходе диода задается известным уравнением :
{ Уит
^ пр кТ
(1)
пр обр
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
где k — постоянная Больцмана, ток через р-п переход.
q — заряд электрона, T — температура в Кельвинах, I
обратный
Если напряжение на p-n переходе достаточно велико, т.е.
кТ
ипр «— ,
то членом (-1) в экспоненте
можно пренебречь и из уравнения (1) можно получить выражение для ипр
(
пр
обр
(2)
У
Если бы 1т
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
поддерживался постоянным, а все остальные члены уравнения (2) ратуры, то напряжение на р-п переходе было бы прямо пропорционально члену
не зависели от темпе-
кТ
и следовательно,
температуре Т. В действительности, обратный ток через р-п переход включает компоненты, сильно зависящие от температуры, что нарушает пропорциональную зависимость напряжения ипр от температуры Т в уравнении (2) и не обеспечивает преимущества перед кремниевым резистором. Поэтому, при использовании диодов в качестве чувствительных элементов в интегральных датчиках температуры, усилия разработчиков были направлены на снижение влияния температурной зависимости обратного тока 1обр на зависимость напряжения иЛр от температуры. Например, использование вместо диодов транзисторных структур, но в диодном включении, что позволяло снизить влияние сопротивления базы диода на температурную зависимость напряжения Ц^, использование специального отбора транзисторов с одинаковыми значениями ипр и коэффициентом усиления по постоянному току , что позволяло обеспечивать взаимозаменяемость диодных чувствительных элементов, и других вариантов. Однако наиболее перспективным с точки зрения использования диодных чувствительных элементов и серийного изготовления полупроводниковых интегральных датчиков температуры оказался вариант, предположенный в работе . Если через транзистор V в диодном включении (рис. 3) пропускать поочередно два различных, но постоянных по величине, тока 11 и 12 в прямом направлении по отношению к р-п переходу эмиттер-база (рис. 4), то принимая, что 12> 11>> 1обр, при токе через диод 1Прг и при температуре Т=Тг уравнение (2) можно переписать.
Имп. (“і
генера- V- ♦
тор тока 11пр
И 12
Рис. 3. Транзистор V в диодном включении в качестве элемента
Рис. 4. Диаграмма протекания токов Iи 1пр2 через диод 1пр, мА
ипр1 1)пр1 1)пр, В
Рис. 5. Вольтамперная характеристика диода и значение напряжений 1прі и 1Пр2, протекающим через диод
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
Таким образом, уравнение (2) будет выглядеть:
соответствующие прямым токам
тт кТ 1
ир =———-1п
п ч
прі
1 обр
Соответственно, при токе через диод Іпр
и при температуре Т=Т1 уравнение (2) перепишется
тт кТ
ипр 2 =———-!п
ч
Г,
1пр 2
1 обр
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
(4)
Измерение прямого тока через диод от значения 1пр1 до значения 1пр2 приведет к изменению напряжения на диоде (рис. 5) на величину:
Аипр.Т1 = ипр 2 ^пр1
■ 1п
1пр 2 1пр1
(5)
Рассуждая аналогично для температуры Т=Т2, можно записать:
прТ2 = ипр2 — ипрі = кТ2 ■ 1п
Л
пр2 1^1
(6)
Если из уравнения (6) вычесть уравнение (5), то можно получить выражение, показывающее, как такое приращение прямого напряжения на диоде ЛОпр зависит от температуры (при условии Т2>Тх):
и = Аипр.тг — А^прТі = (Т2 — Ті у — ■ 1п
щр
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
пр2
1прі
(7)
Уравнение (7) отличается от уравнения (2) тем, что в нем не содержатся члены, зависящие от температуры, и что токовое приращение прямого падения напряжения на диоде прямо пропорционально изменению температуры окружающей среды, не зависит от свойств полупроводникового материала и технологии изготовления транзистора. Температурный коэффициент напряжения (ТКН) ЛОпр определяется
только электрическим режимом диода, т.е. значением
1п
пр 2 1 прі
а точнее отношением токов Іш
и Іт
Импульсный электрический режим протекания токов через диод, как следует из представленных выше рассуждений, легко заменить на электрический режим постоянных токов. Достаточно взять два одинаковых транзистора в диодном включении и пропускать одновременно в прямом направлении по отношению к р-п переходу эмиттер-база ток Іпрі через один диод и ток 1пр2 через другой диод, а напряжение АОпр снимать как разность между базами диодов (рис. 6).
Рис. 6. Схема чувствительного к температуре элемента на двух диодах с постоянным режимом про-
текания токов
прі
я
Е
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
т _____ пит
1 —
пр 2
я
Для схемы (рис. 6) уравнение (7) можно переписать в следующем виде:
ш„ ,{т,-т,(1.1,,(|| . ,8,
Однако, исполнение схемы чувствительного элемента, показанного на рис. 6 в интегральном варианте с заданными электрическими параметрами, обеспечивающими взаимозаменяемость чувствительного элемента, даже для современной технологии, представляет определенные трудности. Так, например, при создании больших интегральных схем геометрия элементов структуры обеспечивается с заданным разбросом их размеров, но электрические параметры элементов схемы, например, сопротивления диффузионных резисторов, можно обеспечить для разных партий схем с разбросом порядка ± (10^40) %.
Для обеспечения взаимозаменяемости чувствительного к температуре элемента (рис. 6), изготовленного с помощью полупроводниковой технологии, можно использовать лазерную подгонку величин резисторов Я2 и Я2, нанесенных на подложку, причем подложкой может служить и полупроводниковый кристалл, в котором сформированы транзисторные структуры. Следует отметить, что метод лазерной подгонки величин сопротивлений резисторов при изготовлении калиброванных датчиков широко используется как отечественными, так и зарубежными фирмами в настоящее время.
Другой вариант, позволяющий обеспечить приемлемую взаимозаменяемость чувствительного к температуре диодного элемента (рис. 6), определим как достижения полупроводниковой технологии в области обеспечения заданных размеров транзисторных структур с удовлетворительной точностью — это использование в схеме (рис. 6) вместо транзистора А2 многоэмиттерной транзисторной структуры. При этом значения сопротивлений резисторов Я2 и Я2 устанавливаются одинаковыми, хотя по величине эти сопротивления могут колебаться в пределах ±50%, но это изменение не будет отражаться на метрологических характеристиках и взаимозаменяемости чувствительного элемента (рис. 6) и позволяет устранить технологические трудности его изготовления в интегральном виде. Схемотехнические изменения, предлагаемые данным вариантом, не изменяют механизм преобразования, положенный в основу
І
пр2
и
работы чувствительного элемента (рис. 6) и определяемый уравнением (7). Действительно если переписать уравнение (7) для схемы (рис. 6) в виде:
(
AU„p =(Т2 -Т)• -• ln q
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
Jпр2 • $Э2 } пр 1 • $Э
‘ (Т 2 — Т, )• — • ln
J пр2 J прі
(9)
где Sэl и Sэ2 — площади эмиттерных p-n переходов транзисторов VI и V2 соответственно (поскольку транзисторы одинаковые в схеме рис. 6, то БЭ1=БЭ2)Г з прі и Зпр2 — плотность тока в эмиттере транзисторов VI и V2 соответственно.
Если в схеме (рис. 6) заменить транзистор V2 на п^миттєрную транзисторную структуру, в которой каждый единичный эмиттерный переход по площади равен эмиттерному переходу транзистора VI и
обеспечены условия протекания одинаковых по величине токов 1Щ
и In
то для такой схемы будут
действительны соотношения Ss2=n •Ssi и jnpi=jnp2 и уравнение (9) можно представить в виде:
(10)
AUпр = (Т2 -Т1 )■ -■ lnI | = (Т2 -Т1 у * • ln(n) .
q V S3\ ) q
Предположения по практической реализации данного варианта диодного чувствительного элемента рассмотрены, например, в работе . На рис. 7 приведена принципиальная схема интегрального полупроводникового датчика температуры с использованием многоэмиттерной транзисторной структуры.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
Поскольку температурная чувствительность диодного элемента (рис. 7) порядка 0,2 мВ/град, то желательно его изготавливать и применять совместно с усилительным устройством V3. Схема чувствительного элемента (рис. 7) положена в основу серийно выпускаемого фирмой Texas Instruments датчика температуры типа STP — 35. В таблице 1 приведены параметры интегральных датчиков типа STP.
Рис. 7. Схема диодного чувствительного к температуре элемента с использованием многоэмиттерной транзисторной структуры, пригодной для использования в виде монолитной интегральной схемы Таблица 1.
Погрешность при 25°С, ЙТ, °С Температурный диапазон, °С Ток, мА Чувствительность, мВ/град Время срабатывания т, сек
STP-35A ±3 -4 0…+ 125 0,4.5 10 13
STP-35B ±2 -4 0…+ 125 0,4.5 10 13
STP-35C ±1 -4 0…+ 125 0,4.5 10 13
Другими интересными примерами использования диодного чувствительного элемента (рис.7) являются датчики температуры типа LM3 911, LM50, LM60, серийного выпускаемые фирмой National Semiconductor. На рис. 8 приведены температурные характеристики датчиков температуры LM50 и LM60.
-65 -55 -45 -35 -25 -1 5 -5 5 15 25 35 45 55 65 75 85 95 105 1 15 125 135 145 155
Температура, С
Рис. 8. Типовая зависимость U^ LM60 и LM50 от температуры при напряжении 10 В
Таким образом, из всех рассмотренных вариантов построения диодных интегральных датчиков наиболее перспективным оказался вариант (с точки зрения промышленного освоения и обеспечения взаимозаменяемости) использования диодного чувствительного элемента с многоэмиттерной транзисторной структурой, на основе которого серийно изготавливается большинство полупроводниковых интегральных датчиков температуры.
ЛИТЕРАТУРА
1. Виглеб Г. Датчики. Устройство и применение. Москва «Мир», 1989 г., 198 с.
2. Степаненко И.П. Основы теории транзисторов и транзисторных схем. — М., «Энергия», 1967г.,
614 с.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
3. Pat O’Neil, Carl Derrington. Transistors — a hot tip for accurate temperature sensing. Electronics, 1979, №21, pp 137-141.
4. Громов В.С.,Николаевский И. Ф. Использование входного сопротивления транзистора для измерения температуры коллекторного перехода. — В кн.: Полупроводниковые приборы и их применение. Под
ред. Я.А. Федотова. — М.: Сов. Радио, 1969, с. 251-259.
Диод — наипростейший по своей комплектации прибор, обладающий свойствами полупроводника.
Между двумя крайностями диода (донорной и акцепторной) пролегает область пространственного заряда, иначе: p-n-переход. Этот «мост» обеспечивает проникновение электронов из одной части в другую, поэтому, в силу разноимённости составляющих его зарядов, внутри диода возникает довольно малый по силе, но всё-таки ток. Движение электронов по диоду происходит только в одну сторону. Обратный ход конечно есть, но совершенно незначительный, а при попытке подключить в этом направлении источник питания диод запирается обратным напряжением. Это увеличивает плотность вещества и возникает диффузия. Кстати, именно по этой причине диод носит название полупроводникового вентиля (в одну сторону движение есть, в другую — нет).
Если попытаться повысить температуру диода, то количество неосновных носителей (электронов двигающихся в обратном основному направлении) увеличится, а p-n-переход начнёт разрушаться.
Именно поэтому рабочая температура полупроводников имеет определённые ограничения
Принцип взаимодействия между падением напряжения на диодном p-n-переходе и температурой самого диода была выявлена практически сразу после того, как он был сконструирован.
В результате p-n-переход диода из кремния — это наиболее простой температурный датчик. Его ТКН (температурный коэффициент напряжения) составляет 3 милливольта на градус цельсия, а точка прямого падения напряжения — около 0,7В.
Для нормальной работы данный уровень напряжения излишне мало, поэтому чаще используется не сам диод, а транзисторные p-n-переходы в комплекте с базовым делителем напряжения.
В результате, конструкция по своим качествам соответствует целой последовательности диодов. Как итог, показатель по падению напряжения может быть гораздо большим, чем 0,7В.
Поскольку ТКС (температурный коэффициент сопротивления) диода является отрицательным (- 2mV/°C), то он оказался весьма актуальным для использования в варикапах, где ему отводится роль стабилизатора резонансной частоты колебательного контура. Контроль осуществляется при помощи температуры.