Что измеряет осциллограф

Содержание

Классификация

По логике работы и назначению осциллографы можно разделить на три группы:

  • реального времени (аналоговый)
  • запоминающий осциллограф (storage oscilloscope)
    • аналоговый (например, с запоминающим устройством на ЭЛТ)
    • цифровой (DSO — digital storage oscilloscope)
  • стробирующий осциллограф (sampling oscilloscope)

Осциллографы с непрерывной развёрткой для регистрации кривой на фотоленте (шлейфовый осциллограф).

По количеству лучей: однолучевые, двулучевые и т. д. Количество лучей может достигать 16 и более (n-лучевой осциллограф имеет n сигнальных входов и может одновременно отображать на экране n графиков входных сигналов).

Осциллографы с периодической развёрткой делятся на: универсальные (обычные), скоростные, стробоскопические, запоминающие и специальные; цифровые осциллографы могут сочетать возможность использования разных функций.

Также существуют осциллографы, совмещенные с другими измерительными приборами (напр. мультиметром). Такие приборы называются скопметрами.

Осциллограф также может существовать не только в качестве автономного прибора, но и в виде приставки к компьютеру: в виде карты расширения, или подключаемой через какой-либо внешний порт.

Устройство

Осциллограф с дисплеем на базе ЭЛТ состоит из следующих основных частей:

  • Осциллографическая электронно-лучевая трубка;
  • Блок горизонтальной развёртки. Генерирует периодический или однократный сигнал пилообразной формы (линейно нарастающий и быстро спадающий), который подаётся на пластины горизонтального отклонения ЭЛТ. Во время спадающей фазы (обратный ход луча) также формируется импульс гашения электронного луча, который подаётся на модулятор ЭЛТ;
  • Входной усилитель исследуемого сигнала, выход которого подключён к пластинам вертикального отклонения ЭЛТ.

Также содержатся вспомогательные блоки: блок управления яркости, калибратор длительности, калибратор амплитуды.

В цифровых осциллографах чаще всего используются ЖК-дисплеи.

Экран

Осциллографическая электронно-лучевая трубкаСхема электронно-лучевой трубки осциллографа: 1 — отклоняющие пластины, 2 — электронная пушка, 3 — пучок электронов, 4 — фокусирующие катушки, 5 — экран

Осциллограф имеет экран A, на котором отображаются графики входных сигналов. У цифровых осциллографов изображение выводится на дисплей (монохромный или цветной) в виде готовой картинки, у аналоговых осциллографов в качестве экрана используется осциллографическая электронно-лучевая трубка с электростатическим отклонением. На экран обычно нанесена разметка в виде координатной сетки.

Сигнальные входы

Осциллографы разделяются на одноканальные и многоканальные (2, 4, 6, и т. д. каналов на входе). Многоканальные осциллографы позволяют одновременно наблюдать на экране несколько сигналов, измерять их параметры и сравнивать их между собой.

Входной сигнал каждого канала подаётся на свой вход «Y» и усиливается своим усилителем вертикального отклонения до уровня, необходимого для работы отклоняющей системы ЭЛТ (десятки вольт) или аналого-цифрового преобразователя. Усилитель вертикального отклонения всегда строится по схеме усилителя постоянного тока (УПТ), то есть имеет нижнюю рабочую частоту 0 Гц. Это позволяет измерять постоянную составляющую сигнала, правильно отображать несимметричные сигналы относительно нулевой линии, измерять постоянное напряжение. Такой режим работы называется — режим с открытым входом.

Однако, если необходимо отсечь постоянную составляющую (например, она слишком велика и уводит луч за границы экрана), усилитель можно переключить в режим с закрытым входом (входной сигнал подаётся на УПТ через разделительный конденсатор).

Управление развёрткой

В большинстве осциллографов используются два основных режима развёртки:

  • автоматический (автоколебательный);
  • ждущий.

В некоторых моделях предусмотрен ещё один режим:

  • однократный.

Автоматическая развёртка

При автоматической развёртке генератор развёртки работает в автоколебательном режиме, поэтому, даже в отсутствие сигнала, по окончании цикла развёртки — цикла генератора пилообразного напряжения развёртки происходит её очередной запуск, это позволяет наблюдать на экране изображение даже в отсутствии сигнала или при подаче на вход вертикального отклонения постоянного напряжения. В этом режиме у многих моделей осциллографов выполнен захват частоты генератора развёртки исследуемым сигналом, при этом частота генератора развёртки в целое число раз ниже частоты исследуемого сигнала.

Ждущий режим развёртки

В ждущем режиме развёртки напротив, при отсутствии сигнала или его недостаточном уровне (либо при неверно настроенном режиме синхронизации) развёртка отсутствует и экран гаснет. Развёртка запускается при достижении сигналом некоторого настроенного оператором уровня, причем можно настроить запуск развёртки как по нарастающему фронту сигнала, так и по падающему. При исследовании импульсных процессов, даже если они непериодические (например, непериодическое, достаточно редкое ударное возбуждение колебательного контура) ждущий режим обеспечивает зрительную неподвижность изображения на экране.

В ждущем режиме развёртку часто запускают не по самому исследуемому сигналу, а некоторым синхронным, обычно опережающим сам исследуемый процесс сигналом, например, сигналом импульсного генератора, возбуждающего процесс в исследуемой схеме. В этом случае, запускающий сигнал подаётся на вспомогательный вход осциллографа — вход запуска развёртки — вход синхронизации.

Однократный запуск

При однократном режиме генератор развёртки «взводится» внешним воздействием, например, нажатием кнопки и далее ожидает запуска точно также, как и в ждущем режиме. После запуска развёртка производится только один раз, для повторного запуска генератор развёртки необходимо «взвести» снова. Этот режим удобен для исследования непериодических процессов, таких как логические сигналы в цифровых схемах, чтобы последующие запуски развёртки по фронтам сигнала не «замусоривали» экран.

Недостаток такого режима развёртки — светящееся пятно по экрану пробегает однократно. Это затрудняет наблюдение при быстрых развёртках, так как яркость изображения в этом случае мала. Обычно в этих случаях применяют фотографирование экрана. Необходимость фотографирования на фотоплёнку ранее устраняли применением осциллографических трубок с запоминанием изображения, в современных цифровых осциллографах запоминание процесса производится в цифровом виде в цифровой памяти (ОЗУ) осциллографа.

Синхронизация развёртки с исследуемым сигналом

Для получения неподвижного изображения на экране каждые последующие траектории движения луча по экрану в циклах развёртки должны пробегать по одной и той же кривой. Это обеспечивает схема синхронизации развёртки, запускающая развёртку на одном и том же уровне и фронте исследуемого сигнала.

Пример. Допустим, исследуется синусоидальный сигнал и схема синхронизации настроена так, чтобы запускать развёртку при нарастании синусоиды, когда её значение равно нулю. После запуска луч отрисовывает одну или несколько, в зависимости от настроенной скорости развёртки, волн синусоиды. После окончания развёртки схема синхронизации не запускает развёртку повторно, как в автоматическом режиме, а дожидается очередного прохождения синусоидой волны нулевого значения на нарастающем фронте. Очевидно, что последующее прохождение луча по экрану повторит траекторию предыдущего. При частотах повторения развёртки свыше 20 Гц, из-за инерционности зрения будет видна неподвижная картина.

Если запуск развёртки не синхронизирован с наблюдаемым сигналом, то изображение на экране будет выглядеть «бегущим» или даже совершенно размазанным. Это происходит потому, что в этом случае, отображаются различные участки наблюдаемого сигнала на одном и том же экране.

Для получения стабильного изображения все осциллографы содержат систему, называемую схемой синхронизации, которую в зарубежной литературе, не совсем корректно, часто называют триггером.

Назначение схемы синхронизации — задерживать запуск развёртки до тех пор, пока не произойдёт некоторое событие. В примере, событием было прохождение синусоиды через нуль на нарастающем фронте.

Поэтому, схема синхронизации имеет как минимум две настройки, доступные оператору:

  • Уровень запуска: задаёт напряжение исследуемого сигнала, при достижении которого запускается развёртка.
  • Тип запуска: по фронту или по спаду.

Правильная настройка этих органов управления обеспечивает запуск развёртки всегда в одном и том же месте сигнала, поэтому изображение сигнала на осциллограмме выглядит стабильным и неподвижным.

Во многих моделях осциллографов имеется ещё один орган управления схемой синхронизации, ручка плавной регулировки «СТАБИЛЬНОСТЬ», изменением её положения изменяют время нечувствительности генератора развёртки к запускающему событию («мертвое время» генератора развёртки). В одном крайнем положении генератор развёртки переводится в автоколебательный режим, в другом крайнем положении — в ждущий режим, в промежуточных положениях изменяет частоту запуска развёртки. Обычно в осциллографах, снабжённых этой регулировкой, отсутствует переключатель режима развёртки «ЖДУЩИЙ/АВТОМАТИЧЕСКИЙ»

Как было сказано, почти всегда предусмотрен дополнительный вход синхронизации развёртки, при этом имеется переключатель запуска развёртки «ВНЕШНИЙ/ВНУТРЕННИЙ», при положении «ВНЕШНИЙ» на вход схемы синхронизации развёртки подаётся не сам исследуемый сигнал, а напряжение со входа синхронизации.

Часто имеется переключатель на синхронизацию от питающей сети (в европейских странах и России — 50 Гц, в некоторых других странах — 60 Гц), при синхронизации от сети на вход схемы синхронизации подаётся напряжение с частотой сети. Такая синхронизация удобна для наблюдения сигналов с частотой сети, или сигналов кратных этой частоте, например, сетевых помех, измерении параметров сетевых фильтров, выпрямителей и др.

В специализированных осциллографах имеются и особые режимы синхронизации, например, режим запуска развёртки в момент начала заданной оператором номером строки в кадре телевизионного сигнала, что удобно при измерении параметров телевизионного тракта и отдельных его каскадов в системах телевидения.

В других специализированных осциллографах, применяемых при исследовании цифровых (например, микропроцессорных) устройств, схема синхронизации дополняется компаратором кодов и запуск развёртки производится при совпадении заданного оператором двоичного кода (слова) с кодом на шине, например, адреса. Это удобно для поиска причины сбоев при записи/чтении некоторой ячейки памяти и других диагностик.

Применение

Один из важнейших приборов в радиоэлектронике. Используются в прикладных, лабораторных и научно-исследовательских целях, для контроля/изучения и измерения параметров электрических сигналов — как непосредственно, так и получаемых при воздействии различных устройств/сред на датчики, преобразующие эти воздействия в электрический сигнал или радиоволны.

Наблюдение фигур Лиссажу

Фигура Лиссажу на экране двухканального осциллографа

В осциллографах есть режим, при котором на пластины горизонтального отклонения подаётся не пилообразное напряжение развёртки, а произвольный сигнал, подаваемый на специальный вход (вход «Х»). Если подать на входы «X» и «Y» осциллографа сигналы близких частот, то на экране можно увидеть фигуры Лиссажу. Этот метод широко используется для сравнения частот двух источников сигналов и для подстройки одного источника под частоту другого.

Курсорные измерения

Пример вывода на экран современного осциллографа трёх исследуемых процессов с двумя курсорными засечками. Временны́е засечки отображаются вертикальными пунктирными линиями, на экран белыми символами слева выведено время между засечками — 40 мс и частота, отвечающая этому временному интервалу, — 25 Гц.

В современных аналоговых и цифровых осциллографах часто имеется вспомогательная сервисная система, позволяющая удобно измерить некоторые параметры исследуемого осциллографом сигнала. В таких осциллографах на экран наблюдения исследуемого сигнала дополнительно выводятся изображения курсоров в виде горизонтальных или вертикальных прямых, либо в виде взаимноперпендикулярных прямых линий.

Координаты курсорных линий по амплитуде и времени отображаются в десятичном цифровом виде, обычно на экране осциллографа, либо на дополнительных цифровых индикаторах.

Оператор с помощью органов управления положением курсоров имеет возможность навести курсор на интересующую его точку изображения сигнала, при этом курсорная система непрерывно показывает в цифровом виде координаты этой точки, — уровня напряжения или момента времени по оси времени и оси амплитуды.

Во многих осциллографах имеется несколько экземпляров курсоров, при этом на цифровые индикаторы можно выводить разность значений курсорных засечек между парой засечек по вертикали и промежутка времени между парой курсорных засечек по горизонтали. Практически во всех типах таких осциллографах автоматически в цифровом виде на индикаторы выводится величина, обратная промежутку времени между курсорными засечками, что сразу даёт частоту исследуемого периодического сигнала при наведении курсоров по оси времени на соседние фронты сигнала.

В некоторых осциллографах предусмотрен режим автоматического позиционирования курсоров на пики сигнала, что в большинстве случаев и является целью амплитудных измерений. Таким образом, курсорные измерения позволяют упростить измерения параметров сигналов человеком, избавляя его от необходимости зрительно считывать число клеток разметки шкалы осциллографического экрана и производить умножение полученных таким образом данных на значения цены деления по вертикали и горизонтали.

Математические функции

В некоторых многоканальных осциллографах присутствует возможность производить математические функции над измеряемыми разными каналами сигналами и выводить результирующий сигнал вместо или в дополнении к измеряемым исходным сигналам. Наиболее часто присутствуют функции сложения, вычитания, умножения, деления. Это позволяет, например, вычесть из исследуемого сигнала канала №1 сигнал синхронизации поступающий на канал №2, освобождая, таким образом, исследуемый сигнал от сигналов синхронизации. Или, например, возможно проверить добротность блока аналогового усиления сигнала, вычитая из выходного сигнала входной сигнал. В некоторых современных цифровых осциллографах присутствуют такие математические функции как интегрирование, дифференцирование, извлечение квадратного корня.

Захват строки телевизионного сигнала

В современных цифровых осциллографах, а также в некоторых специализированных осциллографах на основе электронно-лучевой трубки, присутствует особый режим синхронизации — телевизионный. Этот режим позволяет отобразить одну или несколько заданных телевизионных строк из комплексного видеосигнала. В отличии от обычного осциллографа, блок синхронизации которого может стабильно показать только первую за синхроимпульсом строку, на специализированных осциллографах возможно наблюдать любую часть телевизионной картинки. Такие осциллографы обычно применяются на телевизионных и кабельных студиях и позволяют контролировать технические параметры передающей и записывающей аппаратуры.

Настройка

Современные осциллографы не требуют какой-либо настройки перед использованием, но, тем не менее, в большинстве осциллографов встроен прибор калибровки (Калибратор). Назначение этого прибора — формировать контрольный сигнал с заведомо известными и стабильными параметрами. Обычно такой сигнал имеет форму прямоугольных импульсов с амплитудой 1 Вольт, частотой 1кГц и скважностью 50% (параметры обычно указаны рядом с выходом сигнала калибратора). В любой момент пользователь осциллографа может подключить измерительный щуп прибора к выходу калибратора, и убедиться, что на экране осциллографа виден сигнал с указанными параметрами. В случае, если сигнал отличается от указанного на калибраторе, что скорее характерно для аналоговых осциллографов, то с помощью подстроечной отвертки пользователь может скорректировать входные характеристики щупа или усилители осциллографа таким образом, чтобы сигнал соответствовал данным калибратора. Стоит отметить, что современные цифровые осциллографы не имеют подстроечных элементов по причине использования цифровой обработки сигнала, но имеют автоматическую настройку по калибратору, когда через меню осциллографа вызывается специальная утилита, которая вносит поправочные коэффициенты в математический блок осциллографа и тем самым настраивает осциллограф на корректное отображение сигналов.

История

Ондограф Госпиталье

Электрический колебательный процесс изначально фиксировался вручную на бумаге. Первые попытки автоматизировать запись были предприняты Жюлем Франсуа Жубером в 1880 году, который предложил пошаговый полуавтоматический метод регистрации сигнала. Развитием метода Жубера стал полностью автоматический ондограф Госпиталье. В 1885 году русский физик Роберт Колли создал осциллометр, а в 1893 году французский физик Андре Блондель изобрел магнитоэлектрический осциллоскоп с бифилярным подвесом.

Подвижные регистрирующие части первых осциллографов обладали большой инерцией и не позволяли фиксировать быстротечные процессы. Этот недостаток был устранён в 1897 году Уильямом Дадделлом, который создал светолучевой осциллограф, использовав в качестве измерительного элемента небольшое лёгкое зеркальце. Запись производилась на светочувствительную пластину. Вершиной развития этого метода стали в середине XX века многоканальные ленточные осциллографы.

Практически одновременно с Дадделлом Карл Фердинанд Браун использовал для отображения сигнала изобретённый им кинескоп. В 1899 году устройство было доработано Йонатаном Зеннеком, добавившим горизонтальную развертку, что сделало его похожим на современные осциллографы. Кинескоп Брауна в 1930-е годы заменил кинескоп Зворыкина, что сделало устройства на его основе более надёжными.

В конце XX века на смену аналоговым устройствам пришли цифровые. Благодаря развитию электроники и появлению быстрых аналого-цифровых преобразователей, к 1980-м годам они заняли доминирующую позицию среди осциллографов.

Литература

  • Войнаровский П. Д.,. Электрические измерительные аппараты // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Hawkins, Nehemiah. Hawkins Electrical Guide. — 2nd. — Theo. Audel and Co., 1917. — Vol. 6.
  • Р. Г. Карпов, Н. Р. Карпов, Электрорадиоизмерения М.: «Высшая школа», 1978
  • Green, Leslie O. Analog Seekrets: DC to Daylight. — Future Science Research Press, 2007. — ISBN 9780955506406.
Измерения осциллографом, как пользоваться осциллографом
Осциллограф — это эффективный современный прибор, предназначенный для измерения частотных параметров электрического тока во времени и позволяющий отображать их в графическом виде на мониторе, либо фиксировать их с помощью самопишущих устройств. Он позволяет измерять такие характеристики электрического тока внутри цепи, как его сила, напряжение, частота и угол фазового сдвига.
Зачем нужен осциллограф?
Нет лаборатории, которая смогла бы функционировать долго без измерительных приборов или источников сигналов, токов и напряжения. Если же в планах заняться проектированием или созданием высокочастотных устройств (особенно серьёзной вычислительной техники, скажем, инверторных блоков питания), тогда осциллограф — это отнюдь не роскошь, а необходимость.
Особенно же хорош он тем, что помогает визуально определить форму у сигнала. Чаще всего именно такая форма хорошо показывает, что именно происходит в измеряемой цепи.
Центром всяких осциллографов выступает электронно-лучевая трубка. Можно сказать, что она вроде радиолампы, внутри, соответственно, вакуум.
Катод осуществляет выброс электронов. Установленная фокусирующая система создаёт тоненький луч из излучаемых заряженных частиц. Специальный слой люминофора покрывает весь экран внутри. Под воздействием заряженного пучка электронов возникает свечение. Наблюдая снаружи, можно заметить по центру светящуюся точку. Лучевая трубка укомплектована двумя парами пластин, которые управляют созданным таким образом лучом. Работа электронного луча осуществляется в направлениях, находящихся перпендикулярно. В итоге получаются две управляющие системы, которые создают на экране синусоиду, в которой вертикаль обозначает величину напряжения, а горизонталь — период времени. Таким образом, можно наблюдать параметры поданного на прибор напряжения в определённых временных промежутках. В зависимости от типа подаваемого на осциллограф сигнала с его помощью возможно измерение не только параметров напряжения, но и других величин того или иного тестируемого агрегата.
Какими они бывают
В настоящее время распространены осциллографы двух типов — аналоговый и цифровой (последний отличается большим удобством, расширенными функциями и зачастую более точен). Оба они работают по одинаковому принципу, и указанные ниже способы измерения физических величин могут применяться на любых моделях этого прибора.
Правильное подключение

При проведении измерений важно правильное подключение прибора к измеряемому участку цепи. Осциллограф имеет два выхода с подключаемыми к ним клеммами или щупами. Одна клемма — фазовая, она соединена с усилителем вертикального отклонения луча. Другая — земля, соединенная с корпусом прибора. На большинстве современных приборов фазовый провод заканчивается щупом либо миниатюрным зажимом, а земля — небольшим зажимом типа «крокодил» (см. фото)

На осциллографах советского производства и некоторых российских моделях оба щупа одинаковы, различить их можно либо по значку «земля» на соответствующем проводе, либо по длине — фазовый провод короче. Подключаются они к входам осциллографа, как правило, стандартным штекером (см. рисунок)
Если маркировка отсутствует, а по внешним признакам выяснить, где какой щуп, не удалось, то проводят простой тест. Одной рукой дотрагиваются до одного щупа, при этом другую руку держат в воздухе, не прикасаясь ни к чему. Если этот щуп идет на фазовый вход, то на мониторе появятся заметные помехи (см. рисунок). Они представляют собой значительно искаженную синусоиду с частотой 50 Герц. Если щуп идет к «земле», то монитор останется без изменений.
При подключении осциллографа на измеряемый участок цепи, не имеющий общего провода, щуп «земля» может быть подключен к каждой из измеряемых точек. Если общий провод имеется (это точка, соединенная с корпусом прибора либо заземленная и условно имеющая «нулевой» потенциал), то «землю» предпочтительнее подключать к ней. Если этого не сделать, то точность измерений сильно упадет (в некоторых случаях такие измерения окажутся очень далеки от истинных значений и доверять им будет нельзя).

Измерение напряжения осциллографом

За основу измерения напряжения берется известное значение вертикального масштаба. Перед началом измерений надлежит закоротить оба щупа прибора либо переключить регулятор входа в положение. Нагляднее см. следующую картинку.
После чего рукояткой вертикальной регулировки надлежит выставить линию развертки на горизонтальную ось экрана, чтобы можно было корректно определять высоту.
После этого прибор подключается на измеряемый участок цепи и на мониторе появляется график. Теперь остается только посчитать высоту графика от горизонтальной линии и умножить на масштаб. Например, если на ниже приведенном графике одну клетку считать за 1 вольт (соответственно, она разбита на штриховые деления в 0,2, 0,4, 0,6, и 0,8 вольт), то получаем общее напряжение в 1,4 вольта. Если бы цена деления была 2 вольта, то напряжение бы равнялось 2,8 вольт и так далее…
Выставление нужного масштаба осуществляется вращением специальных ручек настройки.

Определение силы тока

Для узнавания силы тока в цепи с помощью осциллографа в нее последовательно включают резистор, имеющий значительно меньшее сопротивление, чем сама цепь (такое, чтобы он практически не влиял на ее исправную работу).
После этого производят измерение напряжения по принципу, указанному выше. Зная номинальное сопротивление резистора и общее напряжение в цепи несложно, пользуясь законом Ома, рассчитать силу тока.

Измерение частоты с помощью осциллографа

Прибор позволяет успешно измерять частоту сигнала, исходя из его периода. Частота находится в прямо пропорциональной зависимости от периода и рассчитывается по формуле f=1/T, там f — частота, Т — период.
Перед измерением линию развертки совмещают с центральной горизонтальной осью прибора. При проведении измерений осциллограф подключают в исследуемую сеть и наблюдают на экране график.
Для большего удобства, используя ручки горизонтальной настройки, совмещают точку начала периода с одной из вертикальных линий на экране осциллографа. Успешно посчитав количество делений, которое составляет период, следует умножить его на величину скорости развертки.
Рассмотрим на конкретном примере подробнее. Например, период составляет 2,6 делений, развертка — 100 микросекунд/деление. Умножая их, получаем величину периода равную 260 микросекунд (260*10-6 секунд).
Зная период, рассчитываем частоту по формуле f=1/T, в нашем случае частота примерно равна 3,8 кГц.
Измерение сдвига фаз
Сдвиг фаз — это величина, указывающая взаимное положение двух колебательных процессов в течение времени.
Измерение его производят не в секундах, а в долях периода (Т) сигнала. Достичь максимальной точности измерений этого показателя возможно в том случае, если период растянут масштабированием на весь экран.
В современном цифровом осциллографе абсолютно каждый из сигналов имеет свой цвет, что очень удобно при измерениях. В старых же аналоговых вариантах их яркость и цвет, к сожалению, одинаковы, поэтому для большего удобства следует сделать их амплитуду различной. Подготовка измерения сдвига фаз требует точных подготовительных операций.
Первое, что нужно сделать — не подключая прибор к измеряемой цепи, установить ручками вертикальной настройки линии развертки обоих каналов на центральную ось экрана. Затем ручками настройки усиления каналов вертикального отклонения (плавно и ступенчато) 1-й сигнал устанавливается с большей амплитудой, а второй — с меньшей. Ручками регулирования скорости развертки ее величина устанавливается такой, чтобы оба сигнала на экране имели примерно одинаковый период. После этого, регулируя уровень синхронизации, совмещают начало графика напряжения с осью времени. Ручкой горизонтальной настройки устанавливают начало графика напряжения в крайней налево вертикальной линии. Затем ручками регулировки скорости развертки добиваются того, чтобы конец период графика напряжения совпадал с крайней направо вертикальной линией сетки монитора.
Все эти подготовительные операции производят по порядку до тех пор, пока график периода напряжения не растянется на экран полностью. При этом он должен начинаться и заканчиваться в линиях развертки (см. рисунок).

После завершения подготовительного этапа следует выяснить, какой из параметров опережает другой — сила тока или напряжение. Величина, начальная точка периода которой начинается раньше во времени, является опережающей, и наоборот. Если опережающим является напряжение, то параметр угла сдвига фаз будет положительным, если сила тока — отрицательным. Углом сдвига фаз (по модулю) является дистанция между началами и концами периодов сигналов в величине сетки делений монитора. Он рассчитывается по такой формуле:
В ней величина N — это количество клеток сетки, которые занимает один период, а α — количество делений между началами периодов.
Если графики периодов силы тока и напряжения имеют общие начальную и конечную точки, то угол сдвига фаз равняется нолю.
При ремонте радиоаппаратуры поиск неисправностей ведут, измеряя осциллографом обозначенные выше параметры на отдельных участках электронной цепи или у конкретных электронных компонентов (например, микросхем). Затем их сравнивают с указанными в технологических каталогах величинах, стандартных для этих компонентов, после чего и делают выводы о безошибочной работе или неисправности того или иного элемента цепи.
Если статья была вам полезна, поделитесь ею, пожалуйста, в соц.сетях, воспользовавшись кнопками внизу страницы!
Заходите на мой канал в YouTube и в группы «Телемастерская» в Одноклассниках и «Самоделкин» ВКонтакте!
Всем успехов!

Часто в электронных схемах требуется сгенерировать разные типы сигналов, имеющих различные частоты и формы, такие как меандры, прямоугольные, треугольные, пилообразные сигналы и различные импульсы.

Эти сигналы различной формы могут использоваться в качестве сигналов синхронизации, тактирующих сигналов или в качестве запускающих синхроимпульсов. В первую очередь необходимо понять основные характеристики, описывающие электрические сигналы.

С технической точки зрения, электрические сигналы являются визуальным представлением изменения напряжения или тока с течением времени. То есть, фактически — это график изменения напряжения и тока, где по горизонтальной оси мы откладываем время, а по вертикальной оси — значения напряжения или тока в этот момент времени. Существует множество различных типов электрических сигналов, но в целом, все они могут быть разбиты на две основные группы.

  • Однополярные сигналы — это электрические сигналы, которые всегда положительные или всегда отрицательные, не пересекающие горизонтальную ось. К однонаправленным сигналам относятся меандр, тактовые импульсы и запускающие импульсы.
  • Двухполярные сигналы — эти электрические сигналы также называют чередующимися сигналами, так как они чередуют положительные значения с отрицательными, постоянно пересекая нулевое значение. Двухполярные сигналы имеют периодическое изменение знака своей амплитуды. Наиболее распространенным из двунаправленных сигналов, является синусоидальный.

Будучи однонаправленными, двунаправленными, симметричными, несимметричными, простыми или сложными, все электрические сигналы имеют три общие характеристики:

  • Период — это отрезок времени, через который сигнал начинает повторяться. Это временное значение также называют временем периода для синусоид или шириной импульса для меандров и обозначают буквой T.
  • Частота — это число раз, которое сигнал повторяет сам себя за период времени равный 1 секунде. Частота является величиной, обратной периоду времени, (). Единицей измерения частоты является Герц (Гц). Частотой в 1Гц, обладает сигнал, повторяющий 1 раз за 1 cекунду.
  • Амплитуда — это величина изменения сигнала. Измеряется в Вольтах (В) или Амперах (А), в зависимости от того, какую временную зависимость (напряжения или тока) мы используем.

Периодические сигналы

Периодические сигналы являются самыми распространенными, поскольку включают в себя синусоиды. Переменный ток в розетке дома представляет из себя синусоиду, плавно изменяющуюся с течением времени с частотой 50Гц.

Время, которое проходит между отдельными повторениями цикла синусоиды называется ее периодом. Другими словами, это время, необходимое для того, чтобы сигнал начал повторяться.

Период может изменяться от долей секунды до тысяч секунд, так как он связан с его частотой. Например, синусоидальный сигнал, которому требуется 1 секунда для совершения полного цикла, имеет период равный одной секунде. Аналогично, для синусоидального сигнала, которому требуется 5 секунд для совершения полного цикла, имеет период равный 5 секундам, и так далее.

Итак, отрезок времени, который требуется для сигнала, чтобы завершить полный цикл своего изменения, прежде чем он вновь повторится, называется периодом сигнала и измеряется в секундах. Мы можем выразить сигнал в виде числа периодов T в секунду, как показано на рисунке ниже.

Меандр

Меандры широко используются в электронных схемах для тактирования и сигналов синхронизации, так как они имеют симметричную прямоугольную форму волны с равной продолжительностью полупериодов. Практически все цифровые логические схемы используют сигналы в виде меандра на своих входах и выходах.

Так как форма меандра симметрична, и каждая половина цикла одинакова, то длительность положительной части импульса равна промежутку времени, когда импульс отрицателен (нулевой). Для меандров, используемых в качестве тактирующих сигналов в цифровых схемах, длительность положительного импульса называется временем заполнения периода.

Для меандра, время заполнения равно половине периода сигнала. Так как частота равна обратной величине периода, (1/T), то частота меандра:

Например, для сигнала с временем заполнения равным 10 мс, его частота равна:

Гц

Меандры используются в цифровых системах для представления уровня логической «1» большими значениями его амплитуды и уровня логического «0» маленькими значениями амплитуды.

Если время заполнения, не равно 50% от длительности его периода, то такой сигнал уже представялет более общий случай и называется прямоугольным сигналом. В случае, или если время положительной части периода сигнала мало, то такой сигнал, является импульсом.

Прямоугольный сигнал

Прямоугольные сигналы отличаются от меандров тем, что длительности положительной и отрицательной частей периода не равны между собой. Прямоугольные сигналы поэтому классифицируются как несимметричные сигналы.

В данном случае я изобразил сигнал, принимающий только положительные значения, хотя, в общем случае, отрицательные значения сигнала могут быть значительно ниже нулевой отметки.

На изображенном примере, длительность положительного импульса больше, чем длительность отрицательного, хотя, это и не обязательно. Главное, чтобы форма сигнала была прямоугольной.

Отношение периода повторения сигнала , к длительности положительного импульса , называют скважностью:

Величину обратную скважности называют коэффициентом заполнения (duty cycle):

Пример расчета

Пусть имеется прямоугольный сигнал с импульсом длительностью 10мс и коэффициентом заполнения 25%. Необходимо найти частоту этого сигнала.

Коэффициент заполнения равен 25% или ¼, и совпадает с шириной импульса, которая составляет 10мс. Таким образом, период сигнала должен быть равен: 10мс (25%) + 30мс (75%) = 40мс (100%).

Гц

Прямоугольные сигналы могут использоваться для регулирования количества энергии, отдаваемой в нагрузку, такую, например, как лампа или двигатель, изменением скважности сигнала. Чем выше коэффициент заполнения, тем больше среднее количество энергии должно быть отдано в нагрузку, и, соответственно, меньший коэффициент заполнения, означает меньшее среднее количество энергии, отдаваемое в нагрузку. Отличным примером этого является использование широтно-импульсной модуляции в регуляторах скорости. Термин широтно-импульсная модуляция (ШИМ) буквально и означает «изменение ширины импульса».

Импульсы и запускающие сигналы (триггеры)

Хотя, технически, запускающие сигналы и импульсы два отдельных типа сигналов, но отличия между ними незначительны. Запускающий сигнал — это всего лишь очень узкий импульс. Разница в том, что триггер может быть как положительной, так и отрицательной полярности, тогда как импульс только положительным.

Форма импульса, или серии импульсов, как их чаще называют, является одним из видов несинусоидальной формы сигналов, похожей на прямоугольный сигнал. Разница в том, что импульсный сигнал определяется часто только коэффициентом заполнения. Для запускающего сигнала положительная часть сигнала очень короткая с резкими ростом и спадом и ее длительностью, по сравнению с периодом, можно пренебречь.

Очень короткие импульсы и запускающие сигналы предназначены для управления моментами времени, в которые происходят, например, запуск таймера, счетчика, переключение логических триггеров а также для управления тиристорами, симисторами и другими силовыми полупроводниковыми приборами.

Я рассмотрел здесь только основные виды электрических сигналов. Остальные типы сигналов, обычно, получают их комбинацией или модуляцией (изменением параметров, используя другой сигнал), например:

  • Амплитудно-модулированный сигнал
  • Частотно-модулированный сигнал
  • Фазо-модулированный сигнал
  • Фазо-частотно-модулированный сигнал
  • Фазо-кодо-манипулированный сигнал

Подробно я вернусь к ним в своих последующих публикациях.

This entry was posted in Ремонт. Bookmark the <a href="https://kabel-house.ru/remont/chto-izmeryaet-ostsillograf/" title="Permalink to Что измеряет осциллограф" rel="bookmark">permalink</a>.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *