Блок питания усилителя

Схема. Двуполярный ИИП для УМЗЧ

Предлагаемый вниманию читателей импульсный источник питания (ИИП) обеспечивает двуполярное выходное напряжение и предназначен для питания УМЗЧ. От аналогичного ИИП (Москатов Е. “Импульсный источник питания для УМЗЧ”. — Радио, 2007, № 10, с. 36—39) данное устройство отличается почти в два раза большей максимальной выходной мощностью, наличием системы стабилизации выходного напряжения и существенно меньшим числом примененных элементов.

Основные технические характеристики
Напряжение питающей сети
переменного тока, В…..230 ±15%
Частота питающего напряжения, Гц…………………50
Частота преобразования, кГц…..132
Стабилизированное выходное напряжение, В ……….2×50
Максимальная мощность
нагрузки, Вт, не более…….290
Амплитуда пульсаций выходного напряжения, В …….0,15
Максимальный КПД, % ………..84

Принципиальная схема устройства показана на рисунке. Сетевое напряжение через плавкую вставку FU1 и выключатель питания SA1 поступает на фильтр C1L1C3, который подавляет помехи, проникающие в сеть от ИИП. Варистор RU1 защищает элементы ИИП от аварийного повышения напряжения питающей сети. После фильтра сетевое напряжение выпрямляет диодный мост VD4, а конденсатор С5 сглаживает пульсации выпрямленного напряжения. Терморезистор RK1 с отрицательным ТКС ограничивает зарядный ток этого конденсатора при включении устройства. Защитный диод VD2 ограничивает выбросы напряжения на обмотке I трансформатора Т1 и тем самым защищает микросхему DA1 от выхода ее из строя.

Диоды VD6 и VD7 совместно с конденсаторами С6, С7 образуют двуполярный выпрямитель, а светодиод HL1 совместно с токоограничивающим резистором R6 — цепь индикации наличия выходного напряжения ИИП. Однополупериодный выпрямитель на диоде VD5 со сглаживающим конденсатором С8 предназначен для питания вентилятора М1 постоянным напряжением 12В. Этот вентилятор необходим для обдува теплоотвода и, кроме того, он совместно с цепью индикации выполняет функцию постоянной нагрузки ИИП.

Дополнительный маломощный выпрямитель собран на диоде VD3, конденсатор С4 сглаживает пульсации выпрямленного напряжения. Стабилизация выходного напряжения ИИП осуществляется с помощью оптопары U1 и стабилитрона VD8. При увеличении выходного напряжения ток через излучающий диод оптопары возрастает, сопротивление фототранзистора этой оптопары уменьшается и напряжение на входе С микросхемы DA1 возрастает — скважность импульсов через обмотку I увеличивается, следовательно, выходные напряжения ИИП уменьшаются. На элементах C9,C10,L2 собран ФНЧ, уменьшающий амплитуду пульсаций выходных напряжений.

В устройстве применены постоянные резисторы МЛТ, ОМЛТ, С2-22, С2-23, мощность резистора R3 (2 Вт) выбрана не из-за рассеиваемой на нем мощности, а только с учетом максимально допустимого напряжения. Подстроенный резистор — 3329Н-1 или СПЗ-19а, варистор RU1 — JVR-7N391K, JVR-10N391K, JVR-10N431K, JVR-14N391K, JVR-14N431K. Терморезистор RK1 с отрицательным ТКС — любой из серии NIC, обладающий сопротивлением в нормальном состоянии от 10…33 Ом, допускающий протекание тока не менее 3 А.

Оксидные конденсаторы — импортные фирмы Elzet или СарХоп, они должны быть рассчитаны на работу на пульсирующем напряжении с частотой пульсаций не менее 132 кГц. Их можно заменить отечественными конденсаторами К50-35 и аналогичными при условии, что они будут зашунтированы керамическими (КМ-5, КМ-6, К10-17) или пленочными (К73-16, К73-17) конденсаторами на рабочее напряжение не менее 50 В и емкостью 0,047…0,47 мкФ. Конденсаторы С1, СЗ — серии FKP1 или МКР10 фирмы Wima.

Диодный мост KBU8M можно заменить на мост BR1010, KBU606, KBU8K, KBU10K или RS807, стабилитрон ZY6.2 — на 1N4735A, ZY6.8, BZX85B-6V2, BZX85C-6V2, 1 N5341В или 1N5342B, а диод 1.5КЕ350СА — на SMBJ200CA или Р6КЕЗООСА. Диоды 15ЕТНОЗ заменимы на 15ЕТН06, 15ETX06S, ЗОЕРН06, ЗОЕТН06, BYV29-500, BYC10-600, DSEI12-06А или FES16JT, диоды 1N4934 — на BYD33D, ES1B, ES2B, ER1B, ЕРЮ, FR103, MUR120, FYR120, MURS110, SF12, SF22, UF4002. Взамен светодиода КИПД02Г-1Л можно применить светодиоды КИПД36Ж1-Р, КИПД36И1-Р, КИПМ15М-1Р, КИПД02В-1Л, АЛ307ГМ, АЛ307НМ, АЛ307ПМ, а взамен оптопары РС817 — LTV816, LTV817, LTV817A или РС816. Выключатель питания должен обеспечивать коммутацию переменного напряжения 250 В при токе до 3 А, подойдет, например, SC768.

Дроссель L1 намотан проводом ПЭЛШО 0,8 на магнитопроводе КП15х7х6,5 из материала МП-140. Намотку ведут вдвое сложенным проводом до заполнения окна. Для изготовления импульсного трансформатора применен магнитопровод Ш 12×15 из феррита ЗОООНМС, специально разработанного для работы в сильных магнитных полях. Толщина зазора в магнитопроводе составляет 0,16 мм. Обмотка I содержит 60 витков провода ПЭВ-2, ПЭЛШО 0,6, а обмотка II — 5 витков такого же провода диаметром 0,12 мм. Обмотка III содержит 15+2+2+15 витков литцендрата, состоящего из 16 жил изолированного провода с диаметром каждой 0,15 мм. Обмотки изолируют одну от другой тремя слоями фторопластовой, майларовой или лакотканевой ленты. Такой же литцендрат применен для изготовления дросселя L2 — он намотан на тороидальном магнитопроводе КП24х13х6,5 мм из материала МП-140, намотку также ведут вдвое сложенным проводом до заполнения.

Микросхему TOP250Y (в корпусе ТО-220-7С) допустимо заменить на TOP250R (в корпусе ТО-263-7С) или TOP250F (в корпусе ТО-262-7С). В любом случае микросхему крепят на теплоотводе с площадью поверхности не менее 40 см2. Место теплового контакта микросхемы и теплоотвода желательно смазать теплопроводной пастой, например КПТ-8. На этом же теплоотводе через диэлектрические теплопроводящие прокладки крепят диоды VD6 и VD7.

Вентилятор М1 размерами 40x40x12 мм и напряжением питания 12В — производства фирмы Gembird, но можно применить аналогичный от компьютерной техники. Налаживание сводится к точной установке постоянных выходных напряжений подстроечным резистором R5.

Е. МОСКАТОВ, г. Таганрог Ростовской обл.
“Радио” №11 2009г.

В очередной раз встает вопрос о переделке компьютерного блока питания. На этот раз в двухполярный источник питания. Возникла нужда в таком источнике питания для усилителя. Но железный трансформатор мотать не хочется, а сборка с нуля импульсного блока питания занимает слишком много времени. Вот и было решено получить нужное напряжение из компьютерного блока питания. Сам источник питания был необходим для усилителя на микросхеме TDA7294.

TDA7294

И стоит заметить, что многие начинающие радиотехники сталкиваются с такой проблемой – собрали усилитель, но не могут определиться с блоком питания.

На самом деле это сложно назвать переделкой, поскольку компьютерный блок питания без всяких разных переделок может отдавать нужное напряжение для подобных целей. И для этого прежде всего необходимо раздобыть рабочий блок питания абсолютно любой мощности и формата.

Про силовые шины и выходные напряжения должно быть все понятно из следующего рисунка:

По идее, необходимо соединить зеленый провод с любым из черных, чтобы запустить блок питания.

Затем нужно взять пару многожильных проводов и припаять их к тем выводам трансформатора, которые изображены на рисунке ниже:

Ничего сложного! А вся хитрость в том, что в компьютерном блоке питания все выпрямители однополярного типа со средней точкой.

То есть все обмотки, по сути, двухполярные, и если использовать концы этих обмоток и пустить их на отдельный диодный выпрямитель, то можно получить напряжение в 2 раза больше, чем с однополярным выпрямителем, который задействован в компьютерном блоке питания.

Земля блока питания останется самой собой и в этом случае, то есть средней точкой.

Остается подобрать только диодный мост.

В предлагаемом варианте необходимо использовать диоды с обратным напряжением не меньше 100 В. Они обязательно должны быть импульсного типа. Можно также задействовать диоды Шоттки.

Идеальным вариантом являются отечественные КД213. Они довольно мощные и к тому же без проблем работают на таких частотах.

После переделки получается двухполярное напряжение, а если быть точнее, двухполярные 30 В. Это как раз то, что нужно для микросхем типа TDA7294.

И самое важное – будет работать защита. При коротком замыкании блок попросту уйдет в защиту. Чтобы снять ее, необходимо на короткое время разъединить зеленый и черный провода, а затем соединить снова. Если блок будет постоянно использоваться, то стоит поставить выключатель.

В зависимости от блока питания 12-вольтовые шины на трансформаторе могут быть с разных сторон, поэтому, чтобы не путаться, необходимо отследить путь желтого выходного провода и найти диодную сборку на шине 12 В.

Потом нужно припаять провода к крайним выводам этой сборки.

Не будет работать только стабилизация, но, в принципе, для питания усилителя она вовсе не нужна.

Алексей Алексеевич. Мурманск.

Мощный тор трансформатор для усилителя

Чтобы изготовить Мощный тор трансформатор для усилителя в домашних условиях, но на профессиональном уровне, нужно немало терпения и определенных навыков. Я занимаюсь изготовлением мощных концевых усилителей для профессиональных музыкантов.

Собираю всю конструкцию с «нуля», в том числе выполняю намотку торов для блока питания. В этой статье хочу немного рассказать как я изготавливаю мощный тор трансформатор в условиях домашней мастерской, то есть в прямом смысле на «коленках». Тем не менее мои трансформаторы ничем не уступают заводским не по качеству исполнения и работоспособности не по внешнему виду. Прежде чем приступить к изготовлению транса нужно иметь под рукой все необходимые материалы для его намотки. Не буду подробно останавливаться на расчетах, но некоторые пособия для этого я покажу ниже. p>

Скачать →Упрощенный расчет тороидального трансформатора

В общем я надеюсь, что у вас уже имеется подходящий сердечник, габаритная мощность которого соответствует требованиям вашего будущего устройства, тем более если вы хотите собрать свой качественный фирменный усилитель мощности, ну а в случаи его отсутствия, то на «железном» рынки можно подобрать такой «бублик», например от ЛАТРа.

Кстати сказать, на заводах где производят торы, относятся к их изготовлению не совсем так как положено, поэтому такие магнитопроводы требуют небольшой доработки, к тому же мы рассчитываем его применение в ответственном устройстве как усилитель мощности НЧ. Чтобы исправить заводскую халтуру и сделать надежный, мощный тор трансформатор, для начала тороидальное железо, то есть его острые кромки по внутреннем и внешнему периметру необходимо притупить напильником, чтобы эти острые края не повредили обмоточный провод.

Таблица габаритных размеров сердечников

Если сам сердечник не плотно намотан, то тогда для повышения его магнитных свойств, зазоры между витками залить жидким материалом, обладающим магнитными свойствами, который в последствии застынет. Например приготовить раствор карбонильного железа разведенного в ацетоне, а предпочтительнее в дихлоретане. Если таких препаратов нет под рукой, то можно обработать витки железа эпоксидной смолой, а затем высушить. Следующий процесс — изолирование самого железа. Я обычно применяю плотную бумажную ленту на клеевой основе, она толще скотча, поэтому надежнее. Но можно воспользоваться и строительным скотчем в несколько слоев.

Когда сердечник подготовлен, начинаем непосредственно наматывать эмаль-проводом первичную обмотку трансформатора. Для этого необходимо намотать на челнок провод нужного сечения и требуемой длинны. К концу обмоточного провода припаять отрезок гибкого монтажного провода, а стык изолировать в термоусадочный кембрик. Если вы намерены собирать двуполярный мостовой источник питания для каждого канала стереоусилителя, то нужно учесть необходимость вывода средней точки с обмотки трансформатора. Поэтому не ошибитесь при намотке, то есть не забыть в камом месте нужно делать отвод.

Таблица диаметра провода и ток нагрузки

Для меня удобнее производить намотку, как я уже сказал именно на «коленке». То есть располагаюсь на диване в левой руке сердечник — в правой челнок и начинаю мотать стараясь большим пальцем левой руки плотно прижимать провод при этом челнок у меня всегда находится рядом на диване, а не падает на пол если бы я сидел на стуле. Именно так очень удобно, можно конечно сделать небольшое устройство на столе, где бы закреплялся сердечник, но лично для меня мой вариант удобнее всего. Обмоточный провод старайтесь укладывать ровно, а не вкось. По внутреннему диаметру тора он должен ложится виток к витку, а не в навал, а по внешнему периметру должен быть зазор между проводом где-то примерно в три его диаметра, тогда намотка будет ровной и красивой.

Основные характеристики электрической энергии и их взаимосвязь

Вот здесь программа: — воспользовавшись ей можно определить все данные для изготовления тора, а именно: сечение и количество витков провода первичной и вторичной обмоток, габаритная мощность трансформатора, в том числе какое количество витков нужно за один проход, это чтобы не получилось «в навал». После каждого прохода, обмотки необходимо изолировать друг от друга, чтобы не было замыкания между обмотками. Изолировать лучше всего фторопластовой лентой, имеется в магазинах электроники или других хозяйственных магазинах.

Мощный тор трансформатор можно изготовить и с применением другого способа изоляции обмоток, на мой взгляд очень бюджетный и эффективный метод. В супермаркетах продаются специальные термостойкие рулоны с пакетами для запекания мяса в духовке. Отличная вещь! И стоит не дорого и на долго хватит. А пользоваться этой пленкой очень просто: нужно порезать это рулон на ленты шириной примерно 20-25мм и изолировать обмотку двумя-тремя слоями, будет надежно и эффективно. При укладке провода всегда считайте витки, количество которых необходимо вы уже знаете. Когда закончите с выполнением первичной обмотки, нужно проверить ток холостого хода трансформатора.

Измерение тока нужно производить с особой осторожностью и желательно через ЛАТР. Это нужно знать при построении силовой части усилителя мощности и если будет слишком большой пусковой ток при включении усилителя, то появятся сопутствующие проблемы. Идеальный ток холостого хода, который должен иметь мощный тороидальный трансформатор рассчитанный на мощность 1000 Вт, должен быть 40-45 мА, это если при изготовлении сердечника он был хорошо отожжен.

Вторичная обмотка выполняется аналогичным способом, что и первичная. Зная количество витков в первичной обмотки и значение витков на вольт, вы примерно можете определить на каком витке вторички нужно делать отвод среднего провода, а для точного определения лучше замерять напряжение намотанных витков мультиметром. Для этого опять же через ЛАТР устанавливает точное сетевое напряжение 220 вольт и измеряем вольтаж намотанной половинки вторичной обмотки не отсоединяя челнок, а так и измеряем — один щуп прибора на гибкий вывод вторички, другой прямо на конец провода расположенного на челноке предварительно его зачистив.

Если напряжение на средней точке (которое должно быть ровно половине общего напряжения во вторичной обмотке) соответствует заданному значению, значит также делаем гибкий отвод монтажным проводом и продолжаем выполнять обмотку до конца, с таким же количеством витков, как и первой половине. Не забывать после каждого прохода нужно изолировать слой. Затем выполняется еще одна аналогичная вторичная обмотка для второго канала усилителя. Если требуется дополнительная обмотка, например для обеспечения питания вентилятора охлаждения, то ее тоже нужно изготовить, но уже проводом меньшего сечения в зависимости от тока потребления вентилятора.

Не в коем случае не берите напряжение для этой цели с рабочих обмоток предназначенных для питания самого усилителя, должна быть только отдельная обмотка и свой выпрямитель. После того как вы полностью намотали трансформатор, последний слой провода нужно изолировать более надежно, во избежании механических повреждений при монтаже и эксплуатации в дальнейшем.

500 Ватт импульсный блок питания для аудиоусилителей

Рубрика: Обзоры / Блоки питания; kirich ; Опубликовано: 14-03-2018, 01:53 $34.99 Многие знают как я люблю разбираться с разными блоками питания. В этот раз у меня на столе несколько необычный блок питания, по крайней мере такой я еще не тестировал. Да и по большому счету вообще не встречал ранее обзоров блоков питания подобной разновидности, хотя вещь по своему интересная и я раньше делал подобные блоки питания сам.
Заказать я его решил из чистого любопытства, решил что может быть полезным. Впрочем подробнее в обзоре.
Вообще стоит наверное начать с небольшого лирического вступления. Много лет назад я довольно сильно увлекался аудиотехникой, прошел как через полностью самодельные варианты, так и «гибриды», где использовались УМ мощностью до 100 Ватт из магазина Юный техник, и полуразобранная Радиотехника УКУ 010, 101 и Одиссей 010, потом был Феникс 200У 010С.
Даже пробовал собрать УМЗЧ Сухова, но что-то тогда не пошло, уже и не вспомню что именно.

Акустика также разная была, как самодельная, так и готовая, например Романтика 50ас-105, Кливер 150ас-009.

Но больше всего запомнились Амфитон 25АС 027, правда они у меня были несколько доработаны. Попутно к небольшим изменениям схемы и конструкции я заменил родные динамики 50 ГДН на 75 ГДН.
Это и предыдущие фото не мои, так как моя аппаратура давно продана, а я потом перешел на Sven IHOO 5.1, а затем вообще стал слушать только мелкие компьютерные колоночки. Да, вот такой регресс.
Но вот что-то начали бродить в голове мысли, сделать что нибудь, например усилитель мощности, возможно просто так, возможно вообще все делать по другому. Но в итоге решил я заказать блок питания. Конечно я могу его сделать сам, мало того, в одном из обзоров я не только это делал, а и выложил подробную инструкцию, но к этому я еще вернусь, а пока перейду к обзору.
Начну со списка заявленных технических характеристик:
Напряжение питания — 200-240 Вольт
Выходная мощность — 500 Ватт
Выходные напряжения:
Основное — +/-35 Вольт
Вспомогательное 1 — +/- 15 Вольт 1 Ампер
Вспомогательное 2 — 12 Вольт 0.5 Ампера , гальванически отвязано от остальных.
Размеры — 133 x 100 x 42 мм
Каналы +/- 15 и 12 Вольт имеют стабилизацию, основное напряжение +/-35 Вольт не стабилизировано. Здесь я наверное выскажу свое мнение.
Меня часто спрашивают, какой блок питания купить для одного либо другого усилителя. На что я обычно отвечаю — проще собрать самому на базе известных драйверов IR2153 и их аналогов. Первый же вопрос, который следует после этого — так у них же нет стабилизации напряжения.
Да, лично на мой взгляд — стабилизация напряжения питания УМЗЧ не только не нужна, а иногда и вредна. Дело в том, что стабилизированный БП обычно больше шумит на ВЧ и кроме того, могут быть проблемы с цепями стабилизации, потому как усилитель мощности потребляет энергию не равномерно, а всплесками. Мы же слушаем музыку, а не одну частоту.
БП без стабилизации обычно имеет немного выше КПД, так как трансформатор всегда работает в оптимальном режиме, не имеет обратной связи и потому больше похож на обычный трансформатор, но с меньшим активным сопротивлением обмоток.
Вот собственно перед нами и пример БП для усилителей мощности.
Упаковка мягкая, но замотали так, что вряд ли получится его повредить в процессе доставки, хотя противостояние почты и продавцов наверное будет вечным.

Внешне выглядит красиво, особо и не придерешься.


Размер относительно компактный, особенно если сравнивать с обычным трансформатором соответствующей мощности.
Более понятные размеры есть на странице товара в магазине.
1. На входе блока питания установлен разъем, что оказалось довольно удобным.
2. Присутствует предохранитель и полноценный входной фильтр. Вот только про термистор, защищающий от бросков тока как сеть, так и диодный мост с конденсаторами, забыли, это плохо. Также в районе входного фильтра расположены контактные площадки, которые надо замкнуть для перевода БП на напряжение 110-115 Вольт. Перед первым включением лучше проверить, не замкнуты ли площадки если у вас в сети 220-230.
3. Диодный мост KBU810, все бы ничего, но он без радиатора, а при 500 Ватт он уже желателен.
4. Входные фильтрующие конденсаторы имеют заявленную емкость 470 мкФ, реальная около 460 мкФ. Так как они включены последовательно, то общая емкость входного фильтра составляет 230мкФ, маловато для выходной мощности в 500 Ватт. Кстати плата предполагает установку и одного конденсатора. Но в любом случае поднимать емкость без установки термистора я бы не советовал. Причем справа от предохранителя есть даже место для термистора, надо только впаять его и перерезать под ним дорожку.
В инверторе применены транзисторы IRF740, хоть и далеко не новые транзисторы, но раньше я их также широко применял в подобных применениях. Как альтернатива, IRF830.
Транзисторы установлены на отдельных радиаторах, сделано это отчасти не просто так. Радиаторы соединены с корпусом транзистора, причем не только в месте крепления самого транзистора, а и монтажные выводы радиатора соединены на самой плате. На мой взгляд плохое решение, так как будет лишнее излучение в эфир на частоте преобразования, по крайней мере нижний транзистор инвертора (на фото он дальний) я бы отвязал от радиатора, а радиатор от схемы.
Управляет транзисторами неизвестный модуль, но судя по наличию резистора питания, да и просто моему опыту, думаю что не сильно ошибусь, если скажу что внутри стоит банальная IR2153. правда зачем делать такой модуль, для меня осталось загадкой.
Инвертор собран по полумостовой схеме, но в качестве средней точки используется не точка соединения фильтрующих электролитических конденсаторов, а два пленочных конденсатора емкостью 1мкФ (на фото два параллельно трансформатору), а первичная обмотка подключена через третий конденсатор, также емкостью 1мкФ (на фото перпендикулярно трансформатору).
Решение известное и по своему удобное, так как позволяет весьма просто не только увеличить емкость входного фильтрующего конденсатора, а и применить один на 400 Вольт, что может быть полезным при апгрейде.
Габарит трансформатора весьма скромный для заявленной мощности в 500 Ватт. Я конечно протестирую еще его под нагрузкой, но уже могу сказать, что на мой взгляд его реальная длительная мощность на более 300-350 Ватт.
На странице магазина, в перечне ключевых особенностей, было указано —
3. Transformers 0.1 mm * 100 multi-strand oxygen-free enameled wire, heat is very low, efficiency is more than 90%.
Что в переводе означает — в трансформаторе использована обмотка из 100 штук бескислородных проводов диаметром 0.1мм, уменьшен нагрев и КПД выше 90%.
Ну КПД я проверю потом, а вот насчет того, что обмотка многопроволочная, факт. Я конечно их не пересчитывал, но жгут довольно неплохой и данный вариант намотки действительно положительно сказывается на качестве работы трансформатора в частности и всего БП в целом.
Не забыли и про конденсатор, соединяющий «горячую» и «холодную» сторону БП, причем поставили его правильного (Y1) типа.
В выходном выпрямителе основных каналов применены диодные сборки MUR1620CTR и MUR1620CT (16 Ампер 200 Вольт), причем производитель не стал колхозить «гибридные» варианты, а поставил как положено, две комплементарные сборки, одна с общим катодом, а другая с общим анодом. Обе сборки установлены на отдельных радиаторах и также как в случае с транзисторами, они не изолированы от компонентов. Но в данном случае проблема может быть только в плане электробезопасности, хотя если корпус закрыт, то ничего страшного в этом нет.
В выходном фильтре задействовано по паре конденсаторов 1000мкФ х 50 Вольт, что на мой взгляд маловато.
Кроме того, для уменьшения пульсаций между конденсаторами установлен дроссель, а конденсаторы, стоящие после него, дополнительно зашунтированы керамическим 100 нФ.
Вообще на странице товара было написано —
1. All high-frequency low-impedance electrolytic capacitors specifications, low ripple.
В переводе — все конденсаторы имеют низкий импеданс для уменьшения пульсаций. В общем-то так то оно и есть, применены Cheng-X, но это по сути просто немного улучшенный вариант обычных китайских конденсаторов и я бы лучше поставил мою любимую Samwha RD или Capxon KF.
Параллельно конденсаторам нет разрядных резисторов, хотя место на плате для них имеется, потому вас могут ждать «сюрпризы», так как заряд держится довольно долго.
Дополнительные каналы питания подключены к своим обмоткам трансформатора, причем канал 12 Вольт гальванически отвязан от остальных.
Каждый канал имеет независимую стабилизацию напряжения, дроссели для уменьшения помех и керамические конденсаторы по выходу. Но вы наверное заметили, что диодов в выпрямителе пять. Канал 12 Вольт питается от однополупериодного выпрямителя.
По выходу, как и по входу, стоят клеммники, причем весьма неплохого качества и конструкции.
На странице товара есть фото сверху, где видно все и сразу. Уже потом заметил, что в магазине на всех фото есть монтажные стойки, в моем комплекте их не было 🙁
Печатная плата двухсторонняя, качество весьма высокое, использован стеклотекстолит, а не привычный гетинакс. В одном из узких место сделана защитная прорезь.
Снизу также обнаружилась пара резисторов, предположу, что это примитивная схема защиты от перегрузки, которую иногда добавляют к драйверам на IR2153. Но честно говоря, я бы на нее не рассчитывал.
Также снизу печатной платы присутствует маркировка выходов и варианты выходных напряжений, под которые изготавливаются данные платы. Немного заинтриговали две вещи — два одинаковых варианта +/- 70 Вольт и заказной вариант.
Перед тем, как перейти к тестам, немного расскажу о своем варианте подобного БП.
Примерно три с половиной года назад я выкладывал обзор регулируемого БП, где использовался блок питания собранный примерно по такой же схеме.
В собранном виде он также выглядел довольно похоже, извините за плохое качество фото.
Если убрать из моего варианта все «лишнее», например узел регулировки оборотов вентилятора в зависимости от температуры, а также умощненный драйвер транзисторов и схему дополнительного питания от выхода инвертора, то мы получим схему обозреваемого БП.
По сути это тот же БП, только выходных напряжений больше. Вообще схемотехника данного БП совсем простая, проще только банальный автогенератор.
Кроме того обозреваемый БП снабжен примитивной схемой ограничения выходной мощности, подозреваю что реализована она так, как показано на выделенном участке схемы.
Но посмотрим на что способна данная схема и ее реализация в обозреваемом блоке питания.
Здесь надо отметить, что так как стабилизация основного напряжения отсутствует, то оно напрямую зависит от напряжения в сети.
При входном напряжении 223 Вольта выходное составляет 35.2 в режиме холостого хода. Потребление при этом 3.3 Ватта.
При этом присутствует заметный нагрев резистора питания драйвера транзисторов. Его номинал 150 кОм, что при 300 Вольт дает рассеиваемую мощность порядка 0.6 Ватта. Данный резистор греется независимо от нагрузки блока питания.
Также заметен небольшой нагрев трансформатора, фото сделано примерно через 15 минут после включения.
Для нагрузочного теста была собрана конструкция, состоящая из двух электронных нагрузок, осциллографа и мультиметра.
Мультиметр измерял один канал питания, второй канал контролировался вольтметром электронной нагрузки, которая была подключена короткими проводами.
Не буду утомлять читателя большим перечислением тестов, потому сразу перейду к осциллограммам.
1, 2. Разные точки выхода БП до диодных сборок, и с разным временем развертки. Частота работы инвертора составляет 70 кГц.
3, 4. Пульсации перед дросселем канала 12 Вольт и после него. После КРЕНки вообще все гладко, но есть проблема, напряжение в этой точке всего около 14.5 Вольта без нагрузки основных каналов и 13.6-13.8 с нагрузкой, что мало для стабилизатора 12 Вольт.
Нагрузочные тесты проходили так:
Сначала нагружал один канал на 50%, затем второй на 50%, потом нагрузку первого поднимал до 100%, а затем и второй. В итоге получалось четыре режима нагрузки — 25-50-75-100%.
Сначала что на выходе по ВЧ, на мой взгляд очень даже неплохо, пульсации минимальны, а при установке дополнительного дросселя их вообще можно свести почти до нуля.
А вот на частоте 100 Гц все довольно грустно, маловата емкость по входу, маловата.
Полный размах пульсаций при 500 Ватт выходной мощности составляет около 4 Вольт.
Нагрузочные тесты. Так как напряжение под нагрузкой проседало, то я по мере этого поднимал тока нагрузки чтобы выходная мощность примерно соответствовала ряду 125-250-375-500 Ватт.
1. Первый канал — 0 Ватт, 42.4 Вольта, второй канал — 126 Ватт, 33.75 Вольта
2. Первый канал — 125.6 Ватта, 32.21 Вольта, второй канал — 130 Ватт, 32.32 Вольта.
3. Первый канал — 247.8 Ватта, 29.86 Вольта, второй канал — 127 Ватт, 30.64 Вольта.
4. Первый канал — 236 Ватт, 29.44 Вольта, второй канал — 240 Ватт, 29.58 Вольта.
Вы наверное заметили, что в первом тесте напряжение не нагруженного канала больше 40 Вольт. Это обусловлено выбросами напряжения, а так как нагрузки нет совсем, то напряжение плавно поднималось, даже небольшая нагрузка возвращала напряжение в норму.
Одновременно измерялось потребление, но так как есть относительно большая погрешность при измерении выходной мощности, то расчетные значения КПД я также буду приводить ориентировочно.
1. 25% нагрузки, КПД 89.3%
2. 50% нагрузки, КПД 91.6%
3. 75% нагрузки, КПД 90%
4. 476 Ватт, около 95% нагрузки, КПД 88%
5, 6. Просто ради любопытства измерил коэффициент мощности при 50 и 100% мощности.
В общем-то результаты примерно похожи на заявленные 90%
Тесты показали довольно неплохую работу блока питания и все было бы замечательно, если бы не привычная «ложка дегтя» в виде нагрева. Еще в самом начале я оценил примерно мощность БП в 300-350 Ватт.
В процессе привычного теста с постепенным прогревом и интервалами по 20 минут я выяснил, что при мощности 250 Ватт Бп ведет себя просто отлично, нагрев компонентов примерно такой:
Диодный мост — 71
Транзисторы — 66
Трансформатор (магнитопровод) — 72
Выходные диоды — 75
Но когда я поднял мощность до 75% (375 Ватт), то через 10 минут картина была совсем другая
Диодный мост — 87
Транзисторы — 100
Трансформатор (магнитопровод) — 78
Выходные диоды — 102 (более нагруженный канал)
Попытавшись разобраться с проблемой, я выяснил, что идет сильный перегрев обмоток трансформатора, в следствие этого прогревается магнитопровод, снижается его индукция насыщения и он начинает входить в насыщение в итоге резко увеличивается нагрев транзисторов (позже я регистрировал температуру до 108 градусов), затем я остановил тест. При этом тесты » на холодную» с мощностью в 500 Ватт проходили нормально.
Ниже пара термофото, первое при мощности нагрузки 25%, второе при 75%, соответственно через пол часа (20+10 минут). Температура обмоток достигла 146 градусов и был заметный запах перегретого лака.
В общем теперь подведу некоторые итоги, отчасти неутешительные.
Общее качество изготовления очень хорошее, но есть некоторые конструктивные нюансы, например установка транзисторов без изоляции от радиаторов. Радует большое количество выходных напряжений, например 35 Вольт для питания усилителя мощности, 15 для предварительного усилителя и независимые 12 Вольт для всяких сервисных устройств.
Есть схемные недоработки, например отсутствие термистора по входу и малая емкость входных конденсаторов.
В характеристиках было заявлено что дополнительные каналы 15 Вольт могут выдать ток до 1 Ампера, реально я бы не ждал больше 0.5 Ампера без дополнительного охлаждения стабилизаторов. Канал 12 Вольт скорее всего вообще не выдаст более 200-300мА.
Но все эти проблемы либо не критичны, либо легко решаются. Самая сложная проблема — нагрев. БП может длительно отдавать до 250-300 Ватт, 500 Ватт только относительно кратковременно, либо придется добавлять активное охлаждение.
Попутно у меня возник небольшой вопрос к уважаемой общественности. Есть мысли сделать свой усилитель, соответственно с обзорами. Но какой был бы интереснее, усилитель мощности, предварительный, если УМ, то на какую мощность и т.п. Лично мне он не особо нужен, но вот поковыряться настроение есть. Обозреваемый БП к этому имеет слабое отношение 🙂
Этот БП на алиэкспресс — , и еще одна.
На этом у меня все, надеюсь что информация была полезна и как обычно жду вопросов в комментариях. $34.99

Тороидальный трансформатор

Тороидальные трансформаторы, в сравнении с трансформаторами на броневых сердечниках из Ш-образных пластин, имеют несколько преимуществ:

  • меньший объем и вес;
  • более высокий КПД;
  • лучшее охлаждение для обмоток.

Мне оставалось только рассчитать напряжении и количества витков для вторичных обмоток с последующей их намоткой.

Первичная обмотка уже содержала примерно 800 витков проводом ПЭЛШО 0,8мм, она была залита парафином и заизолирована слоем тонкой ленты из фторопласта.

Измерив приблизительные размеры железа трансформатора можно выполнить расчет его габаритной мощности, таким образом можно прикинуть подходит ли сердечник для получения нужной мощности или нет.

Рис. 1. Размеры железного сердечника для тороидального трансформатора.

  • Габаритная мощность (Вт) = Площадь окна (см2) * Площадь сечения (см2)
  • Площадь окна = 3,14 * (d/2)2
  • Площадь сечения = h * ((D-d)/2)

Для примера, выполним расчет трансформатора с размерами железа: D=14см, d=5см, h=5см.

  • Площадь окна = 3,14 * (5см/2) * (5см/2) = 19,625 см2
  • Площадь сечения = 5см * ((14см-5см)/2) = 22,5 см2
  • Габаритная мощность = 19,625 * 22,5 = 441 Вт.

Если вам нужно рассчитать тороидальный трансформатор, то вот небольшая подборка из статей: (1Мб).

Габаритная мощность используемого мною трансформатора оказалась явно меньшей чем я ожидал — где-то 250 Ватт.

Расчет количества витков и намотка

Для питания остальных электронных блоков усилителя было решено намотать несколько отдельных вторичных обмоток. Для намотки катушек медным эмалированным проводом был изготовлен деревянный челнок. Также его можно изготовить из стеклотекстолита или пластмассы.

Рис. 2. Челнок для намотки тороидального трансформатора.

Намотка выполнялась медным эмалированным проводом, который был в наличии:

  • для 4х обмоток питания УМЗЧ — провод диаметром 1,5 мм;
  • для остальных обмоток — 0,6 мм.

Число витков для вторичных обмоток я подбирал экспериментальным способом, поскольку мне не было известно точное количество витков первичной обмотки.
Суть метода:

  1. Выполняем намотку 20 витков любого провода;
  2. Подключаем к сети ~220В первичную обмотку трансформатора и измеряем напряжение на намотанных 20-ти витках;
  3. Делим нужное напряжение на полученное из 20-ти витков — узнаем сколько раз по 20 витков нужно для намотки.

Например: нам нужно 25В, а из 20-ти витков получилось 5В, 25В/5В=5 — нужно 5 раз намотать по 20 витков, то есть 100 витков.

Расчет длины необходимого провода был выполнен так: намотал 20 витков провода, сделал на нем метку маркером, отмотал и измерил его длину. Разделил нужное количество витков на 20, полученное значение умножил на длину 20-ти витков провода — получил приблизительно необходимую длину провода для намотки. Добавив 1-2 метра запаса к общей длине можно наматывать провод на челнок и смело отрезать.

Например: нужно 100 витков провода, длина 20-ти намотанных витков получилась 1,3 метра, узнаем сколько раз по 1,3 метра нужно намотать для получения 100 витков — 100/20=5, узнаем общую длину провода (5 кусков по 1,3м) — 1,3*5=6,5м. Добавляем для запаса 1,5м и получаем длину — 8м.

Для каждой последующей обмотки измерение стоит повторить, поскольку с каждой новой обмоткой необходимая на один виток длина провода будет увеличиваться.

Для намотки каждой пары обмоток по 25 Вольт на челнок были параллельно уложены сразу два провода (для 2х обмоток). После намотки, конец первой обмотки соединен с началом второй — получились две вторичные обмотки для двуполярного выпрямителя с соединением посередине.

После намотки каждой из пар вторичных обмоток для питания схем УМЗЧ, они были заизолированы тонкой фторопластовой лентой.

Таким образом были намотаны 6 вторичных обмоток: четыре для питания УМЗЧ и еще две для блоков питания остальной электроники.

Схема выпрямителей и стабилизаторов напряжения

Ниже приведена принципиальная схема блока питания для моего самодельного усилителя мощности.

Рис. 2. Принципиальная схема источника питания для самодельного усилителя мощности НЧ.

Для питания схем усилителей мощности НЧ используются два двуполярных выпрямителя — А1.1и А1.2. Остальные электронные блоки усилителя будут питаться от стабилизаторов напряжения А2.1 и А2.2.

Резисторы R1 и R2 нужны для разрядки электролитических конденсаторов, в момент когда линии питания отключены от схем усилителей мощности.

В моем УМЗЧ 4 канала усиления, их можно включать и выключать попарно с помощью выключателей, которые коммутируют линии питания платок УМЗЧ с помощью электромагнитных реле.

Резисторы R1 и R2 можно исключить из схемы если блок питания будет постоянно подключен к платам УМЗЧ, в таком случае электролитические емкости будут разряжаться через схему УМЗЧ.

Диоды КД213 рассчитаны на максимальный прямой ток 10А, в моем случае этого достаточно. Диодный мост D5 рассчитан на ток не менее 2-3А,собрал его из 4х диодов. С5 и С6 — емкости, каждая из которых состоит из двух конденсаторов по 10 000 мкФ на 63В.

Рис. 3. Принципиальные схемы стабилизаторов постоянного напряжения на микросхемах L7805, L7812, LM317.

Расшифровка названий на схеме:

  • STAB — стабилизатор напряжения без регулировки, ток не более 1А;
  • STAB+REG — стабилизатор напряжения с регулировкой, ток не более 1А;
  • STAB+POW — регулируемый стабилизатор напряжения, ток примерно 2-3А.

При использовании микросхем LM317, 7805 и 7812 выходное напряжение стабилизатора можно рассчитать по упрощенной формуле:

Uвых = Vxx * ( 1 + R2/R1 )

Vxx для микросхем имеет следующие значения:

  • LM317 — 1,25;
  • 7805 — 5;
  • 7812 — 12.

Пример расчета для LM317: R1=240R, R2=1200R, Uвых = 1,25*(1+1200/240) = 7,5V.

Конструкция

Вот как планировалось использовать напряжения от блока питания:

  • +36В, -36В — усилители мощности на TDA7250
  • 22В — схемы задержки включения и защиты акустических систем
  • 12В — электронные регуляторы громкости, стерео-процессоры, индикаторы выходной мощности, схемы термоконтроля, вентиляторы, подсветка;
  • 14В — электронные регуляторы тембра.
  • 5В — индикаторы температуры, микроконтроллер, панель цифрового управления.

Микросхемы и транзисторы стабилизаторов напряжения были закреплены на небольших радиаторах, которые я извлек из нерабочих компьютерных блоков питания. Корпуса крепились к радиаторам через изолирующие прокладки.

Печатная плата была изготовлена из двух частей, каждая из которых содержит двуполярный выпрямитель для схемы УМЗЧ и нужный набор стабилизаторов напряжения.

Рис. 4. Одна половинка платы источника питания.

Рис. 5. Другая половинка платы источника питания.

Рис. 6. Готовые компоненты блока питания для самодельного усилителя мощности.

Позже, при отладке я пришел к выводу что гораздо удобнее было бы изготовить стабилизаторы напряжений на отдельных платах. Тем не менее, вариант «все на одной плате» тоже не плох и по своему удобен.

Также выпрямитель для УМЗЧ (схема на рисунке 2) можно собрать навесным монтажом, а схемы стабилизаторов (рисунок 3) в нужном количестве — на отдельных печатных платах.

Соединение электронных компонентов выпрямителя показано на рисунке 7.

Рис. 7. Схема соединений для сборки двуполярного выпрямителя -36В+36В с использованием навесного монтажа.

Соединения нужно выполнять используя толстые изолированные медные проводники.

Диодный мост с конденсаторами на 1000pF можно разместить на радиаторе отдельно. Монтаж мощных диодов КД213 (таблетки) на один общий радиатор нужно выполнять через изоляционные термо-прокладки (терморезина или слюда), поскольку один из выводов диода имеет контакт с его металлической подкладкой!

Для схемы фильтрации (электролитические конденсаторы по 10000мкФ, резисторы и керамические конденсаторы 0,1-0,33мкФ) можно на скорую руку собрать небольшую панель — печатную плату (рисунок 8).

Рис. 8. Пример панели с прорезями из стеклотекстолита для монтажа сглаживающих фильтров выпрямителя.

Для изготовления такой панели понадобится прямоугольный кусочек стеклотекстолита. С помощью самодельного резака (рисунок 9), изготовленного из ножовочного полотна по металлу, прорезаем медную фольгу вдоль по всей длине, потом одну из получившихся частей разрезаем перпендикулярно пополам.

Рис. 9. Самодельный резак из ножовочного полотна, изготовленный на точильном станке.

После этого намечаем и сверлим отверстия для деталей и крепления, зачищаем тоненькой наждачной бумагой медную поверхность и лудим ее с помощью флюса и припоя. Впаиваем детали и подключаем к схеме.

Вот такой, не сложный блок питания был изготовлен для будущего самодельного усилителя мощности звуковой частоты. Останется дополнить его схемой плавного включения (Soft start) и ждущего режима.

UPD: Юрий Глушнев прислал печатную плату для сборки двух стабилизаторов с напряжениями +22В и +12В. На ней собраны две схемы STAB+POW (рис. 3) на микросхемах LM317, 7812 и транзисторах TIP42.

Рис. 10. Печатная плата стабилизаторов напряжения на +22В и +12В.

Скачать — (63 КБ).

Еще одна печатная плата, разработанная под схему регулируемого стабилизатора напряжения STAB+REG на основе LM317:

Рис. 11. Печатная плата для регулируемого стабилизатора напряжения на основе микросхемы LM317.

Скачать — (7 КБ).

Начало цикла статей: Усилитель мощности ЗЧ своими руками ( Phoenix-P400 )

This entry was posted in Ремонт. Bookmark the <a href="https://kabel-house.ru/remont/blok-pitaniya-usilitelya/" title="Permalink to Блок питания усилителя" rel="bookmark">permalink</a>.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *